Table of Contents

1 Introduction ... 5
 1.1 Executive Summary .. 5
 1.2 Implementing Best Practices ... 5
 1.3 Intended Audience .. 6
 1.4 Document Roadmap ... 6

2 An Overview of VMware Storage Options .. 7
 2.1 An Introduction to Storage in a Virtual Infrastructure .. 7
 2.2 The Value of Multiprotocol Storage Arrays ... 7
 2.3 The 80/20 Rule .. 8
 2.4 VMFS Datastores .. 8
 2.5 NFS Datastores ... 10
 2.6 SAN Raw Device Mappings ... 11
 2.7 Datastore Comparison Tables.. 12
 2.8 VMware Virtual Disk Formats ... 14
 2.9 Increasing Storage Use ... 16
 2.10 Storage Array Thin Provisioning .. 16
 2.11 Storage Array Data Deduplication ... 17
 2.12 VSTORAGE Array Integration in VMware vSphere 4.1 ... 19

3 Storage Network Design and Setup ... 23
 3.1 SAN and NAS Storage Networking Basics ... 23
 3.2 Fibre Channel Storage Networking Basics ... 23
 3.3 Ethernet Storage Networking Basics .. 25
 3.4 Cisco Nexus 1000V VNEXTENDED Switch Recommendations ... 30
 3.5 Switching Capabilities Determine the Storage Network Architecture ... 31
 3.6 Storage Network Architecture with Multiswitch Link Aggregation ... 32
 3.7 Storage Network Architecture with Traditional Ethernet Switches ... 39
 3.8 Enabling Multiple TCP Session Support for Iscsi .. 47

4 Storage Array Design and Setup .. 52
 4.1 A New Operational Model: Provisioning Resource Pools ... 52
 4.2 Storage Architecture Concepts .. 53
 4.3 NetApp Storage Constructs ... 53
 4.4 NetApp Array Configuration .. 55
 4.5 Creating a Service Account for the Core Feature of the Virtual Storage Console 2.0 58
 4.6 Setting Storage Management Options for the Provisioning and Cloning Feature of VSC 2.0 60
5 VSPHERE DYNAMIC STORAGE PROVISIONING AND MANAGEMENT ... 63
 5.1 STORAGE PROVISIONING AND MANAGEMENT BASED ON VCENTER ... 63
 5.2 INSTALLING THE VIRTUAL STORAGE CONSOLE 2.0 .. 65
 5.3 ADDING STORAGE CONTROLLERS TO THE VIRTUAL STORAGE CONSOLE 66
 5.4 OPTIMAL STORAGE SETTINGS FOR ESX/ESXI HOSTS .. 67
 5.5 ADDING STORAGE CONTROLLERS FOR PROVISIONING AND CLONING .. 68
 5.6 ASSIGNING STORAGE RESOURCES FOR PROVISIONING AND CLONING 70
 5.7 END-TO-END PROVISIONING OF DATASTORES IN VCENTER .. 71
 5.8 CHOOSING A VIRTUAL MACHINE DATA LAYOUT ... 75
 5.9 RESIZING DATASTORE CAPACITY IN VCENTER ... 78
 5.10 MONITORING DATASTORE AND STORAGE ARRAY CAPACITY IN VCENTER 80
6 VIRTUAL MACHINE CONFIGURATION AND OPTIMAL SETTINGS ... 83
 6.1 WINDOWS VM FILE SYSTEM PERFORMANCE .. 83
 6.2 OPTIMUM VM AVAILABILITY ... 83
 6.3 OPTIMAL STORAGE PERFORMANCE .. 84
 6.4 VM PARTITION ALIGNMENT ... 85
 6.5 IDENTIFYING PARTITION ALIGNMENT .. 85
 6.6 CORRECTIVE ACTIONS FOR VMS WITH MISALIGNED PARTITIONS ... 86
 6.7 CREATE PROPERLY ALIGNED PARTITIONS FOR NEW VMS ... 87
 6.8 ADDING STORAGE CAPACITY TO A VM ... 87
7 DISK-BASED SNAPSHOT BACKUPS FOR VMWARE ... 90
 7.1 COMPLEMENTARY SNAPSHOT TECHNOLOGIES .. 90
 7.2 NETAPP SNAPSHOT BACKUPS FOR VSPHERE ... 90
8 VSPHERE 5 INTRODUCTION .. 92
 8.1 VMWARE ESXI .. 92
 8.2 VMWARE VCENTER SERVER .. 92
 8.3 USER INTERFACES ... 93
 8.4 HOST PROFILES .. 94
9 VSPHERE 5 DATASTORE UPDATE .. 95
 9.1 DATASTORE COMPARISON TABLES .. 95
 9.2 VMFS 5 .. 97
 9.3 NFS CHANGES IN VSPHERE 5 .. 98
 9.4 STORAGE DISTRIBUTED RESOURCE SCHEDULER (STORAGE DRS) .. 99
 9.5 VSPHERE STORAGE I/O CONTROL .. 104
10 VSPHERE 5 STORAGE NETWORKING ... 106
 10.1 VSPHERE STANDARD VSWITCHES .. 106
1 INTRODUCTION

1.1 EXECUTIVE SUMMARY

NetApp® technology enables companies to extend their virtual infrastructures to include the benefits of advanced storage virtualization. Our unified storage platforms provide industry-leading technologies in the areas of storage efficiencies, instantaneous virtual machine (VM) and datastore cloning for virtual servers and virtual desktops, and virtual data center backup and business continuance solutions.

This technical report reviews the best practices for implementing VMware® vSphere® with NetApp unified storage arrays. NetApp has been providing advanced storage features to VMware solutions since 2001. During this time, NetApp has developed operational guidelines for storage arrays running Data ONTAP® and ESX® Server or ESXi™ Server. These techniques, which are described in this report, have been documented and are referred to as “best practices.”

1.2 IMPLEMENTING BEST PRACTICES

Unless stated otherwise, the recommendations and best practices presented in this document should be considered as deployment requirements. NetApp and VMware will still provide support even if you do not implement all of the contained best practices. However, disregarding any of these practices commonly results in the need to implement them at a later date, on a much larger environment, and often with the requirement of application downtime. For these reasons, NetApp recommends implementing all of the best practices defined within this document as a part of your initial deployment or migration.

All recommendations in this document apply specifically to deploying vSphere on NetApp. Therefore, the contents of this document supersede all recommendations and best practices expressed in other NetApp documents.

Note: Data ONTAP version 7.3.1.1 or later is required to implement the NetApp vSphere plug-ins. If you plan to run an older version of Data ONTAP, you might need to use a manual process to apply some of the configuration changes described in this document.

In addition to this document, NetApp and our partners offer professional services to architect and deploy the designs contained within this document. These services can provide optimal virtual storage architecture for your virtual data center.
1.3 INTENDED AUDIENCE

This best practice document is part of the NetApp Technical Library and is intended for use by individuals responsible for architecting, designing, managing, and supporting VMware virtual infrastructures. Readers of this content should, at a minimum, be familiar with concepts pertaining to VMware ESX/ESXi Server 4.0, vCenter™ Server 4.0, and NetApp Data ONTAP 7G.

We have identified individuals in specific roles who will find the content in this document useful. The administrative roles required to implement the technology and/or configurations are presented at the beginning of each section.

1.4 DOCUMENT ROADMAP

This document, TR-3749, is the main document in a set of documents from NetApp covering virtualization on NetApp, specifically with VMware products. This document is specifically in reference to VMware vSphere 4.0. Earlier versions of this document contained manual processes that were later replaced by plug-in tools, and the manual processes were moved to appendixes. The manual processes have now been moved to a separate companion document, TR-3880: CLI Configuration Processes for NetApp and VMware vSphere Storage Arrays Running Data ONTAP and ESX/ESXi Server. Additional documents on specific technologies and solutions are listed in the “Document References” section at the end of this technical report.
2 AN OVERVIEW OF VMWARE STORAGE OPTIONS

This section applies to:

- Storage administrators
- VI administrators

2.1 AN INTRODUCTION TO STORAGE IN A VIRTUAL INFRASTRUCTURE

VMware ESX supports three types of storage configurations when connecting to shared storage arrays: VMware Virtual Machine File System (VMFS) datastores, network-attached storage (NAS) datastores, and raw device mappings (RDMs). It is assumed that customers understand that shared storage is required to enable high-value VMware features such as high availability (HA), Distributed Resource Scheduler (DRS), vMotion®, and fault tolerance. The goal of the following sections is to provide customers with the information required to design their virtual data center.

VMware virtualization technology makes it easy for customers to leverage all of these storage designs at any time or simultaneously. The following section reviews these storage options and summarizes the unique characteristics of each technology within a virtual architecture.

2.2 THE VALUE OF MULTIPROTOCOL STORAGE ARRAYS

The virtualization of a data center results in physical systems being virtualized as part of a cost-savings effort to reduce both capex and opex through infrastructure consolidation and increased operational efficiencies. These efforts result in multiple VMs sharing physical resources, including shared storage pools known as datastores. Virtualizing demanding, business-critical applications such as e-mail or database servers results in gains in operational efficiencies. This latter group of systems might share server resources but is typically configured with exclusive access to the storage it requires.

VMware and NetApp both offer technologies that natively support multiple storage protocols. These technologies allow customers to deploy best-in-class virtual data centers that leverage the strengths inherent when using these technologies together. This discussion goes beyond the comparison of storage area network (SAN) versus NAS and is rather a consideration of the operational value based on the type of storage network interconnect available to a virtual data center.

Whether your storage network is Fibre Channel (FC) or Ethernet (NFS, iSCSI, and FCoE), these technologies combine with NetApp storage to scale the largest consolidation efforts and to virtualize the most demanding applications without sacrifice or the need to deploy separate hardware to meet the needs of either environment. This is virtualization, which is valuable in a storage array platform.
2.3 THE 80/20 RULE

When designing the storage architecture for a virtual data center, you can apply what we refer to as the 80/20 rule, which is that 80% of all systems virtualized are for consolidation efforts. The remaining 20% of the systems are classified as business-critical applications. Although these applications can be virtualized successfully, they tend to be deployed on shared storage pools but in what we refer to as isolated datasets.

THE CHARACTERISTICS OF CONSOLIDATION DATASETS

Consolidation datasets have the following characteristics:

- The VMs do not require application-specific backup and restore agents.
- The dataset is the largest in terms of the number of VMs and potentially the total amount of storage addressed.
- Individually, each VM might not address a large dataset or have demanding IOP requirements; however, the collective whole might be considerable.
- These datasets are ideally served by large, shared, policy-driven storage pools (or datastores).

THE CHARACTERISTICS OF ISOLATED DATASETS (FOR BUSINESS-CRITICAL APPLICATIONS)

Isolated datasets have the following characteristics:

- The VMs require application-specific backup and restore agents.
- Each individual VM might address a large amount of storage and/or have high I/O requirements.
- Storage design and planning apply in the same way as with physical servers.
- These datasets are ideally served by individual, high-performing, nonshared datastores.

Consolidated datasets work well with Network File System (NFS) datastores because this design provides greater flexibility in terms of capacity than SAN datastores when managing hundreds or thousands of VMs. Isolated datasets run well on all storage protocols; however, some tools or applications might have restrictions around compatibility with NFS and/or VMFS.

Unless your data center is globally unique, the evolution of your data center from physical to virtual will follow the 80/20 rule. In addition, the native multiprotocol capabilities of NetApp and VMware will allow you to virtualize more systems more quickly and easily than you could with a traditional storage array platform.

2.4 VMFS DATASTORES

The VMware VMFS is a high-performance clustered file system that provides datastores, which are shared storage pools. VMFS datastores can be configured with logical unit numbers (LUNs) accessed by FC, iSCSI, or Fibre Channel over Ethernet (FCoE). VMFS allows traditional LUNs to be accessed simultaneously by every ESX server in a cluster.
VMFS provides the VMware administrator with a fair amount of independence from the storage administrator. By deploying shared datastores, the VMware administrator can provision storage to VMs as needed. In this design, most data management operations are performed exclusively through VMware vCenter Server.

Applications traditionally require storage considerations to make sure their performance can be virtualized and served by VMFS. With these types of deployments, NetApp recommends deploying the virtual disks on a datastore that is connected to all nodes in a cluster but is only accessed by a single VM.

This storage design can be challenging in the area of performance monitoring and scaling. Because shared datastores serve the aggregated I/O demands of multiple VMs, this architecture doesn’t natively allow a storage array to identify the I/O load generated by an individual VM.

SPANNED VMFS DATASTORES

VMware provides the ability of VMFS extents to concatenate multiple LUNs into a single logical datastore, which is referred to as a spanned datastore. Although spanned datastores can overcome the 2TB LUN size limit, they are most commonly used to overcome scaling limits imposed by storage arrays that use per LUN I/O queues. These traditional architectures place a limit on the number of simultaneous commands that can be sent to a LUN at a given time, which can impede overall I/O performance in a datastore.

Storage arrays powered by Data ONTAP are free of this legacy architecture; therefore, NetApp does not recommend the use of spanned VMFS datastores.
VMFS DATASTORES ON NETAPP LUNS

NetApp enhances the use of VMFS datastores through many technologies, including array-based thin provisioning; production-use data deduplication; immediate zero-cost datastore clones; and integrated tools such as Site Recovery Manager, SnapManager® for Virtual Infrastructure, the Rapid Cloning Utility (RCU), the Virtual Storage Console (VSC), and SANscreen® VM Insight. Our queue depth free LUN architecture allows VMFS datastores to scale greater than with traditional array architectures in a natively simple manner.

2.5 NFS DATASTORES

vSphere allows customers to leverage enterprise-class NFS arrays to provide datastores with concurrent access by all of the nodes in an ESX cluster. This access method is very similar to the one with VMFS. The NetApp NFS provides high performance, the lowest per-port storage costs, and some advanced data management capabilities.

Figure 3 displays an example of this configuration.

Note: The storage layout appears similar to a VMFS datastore; however, each virtual disk file has its own I/O queue directly managed by the NetApp FAS system.
Deploying VMware with the NetApp advanced NFS results in a high-performance, easy-to-manage implementation that provides VM-to-datastore ratios that cannot be accomplished with other storage protocols such as FC. This architecture can result in a 10x increase in datastore density with a correlating reduction in the number of datastores. With NFS, the virtual infrastructure receives operational savings because there are fewer storage pools to provision, manage, back up, replicate, and so on.

Through NFS, customers receive an integration of VMware virtualization technologies with WAFL® (Write Anywhere File Layout), which is a NetApp advanced data management and storage virtualization engine. This integration provides transparent access to VM-level storage virtualization offerings such as production-use data deduplication, immediate zero-cost VM and datastore clones, array-based thin provisioning, automated policy-based datastore resizing, and direct access to array-based Snapshot™ copies. NetApp provides integrated tools such as Site Recovery Manager, SnapManager for Virtual Infrastructure (SMVI), the RCU, and the VSC.

2.6 SAN RAW DEVICE MAPPINGS

ESX gives VMs direct access to LUNs for specific-use cases such as P2V clustering or storage vendor management tools. This type of access is referred to as a raw device mapping (RDM) and can be configured with FC, iSCSI, and FCoE. In this design, ESX acts as a connection proxy between the VM and the storage array.

Unlike VMFS and NFS, RDMs are not used to provide shared datastores. Figure 4 shows an example of this configuration.

RDMs are an enabling technology for solutions such as VM and physical-to-VM host-based clustering, such as with Microsoft® Cluster Server (MSCS). RDMs provide traditional LUN access to a host; therefore, they can achieve high individual disk I/O performance and can be easily monitored for disk performance by a storage array.
RDM LUNS ON NETAPP

RDMs are available in two modes: physical and virtual. Both modes support key VMware features such as vMotion and can be used in both HA and DRS clusters. The key difference between the two technologies is the amount of SCSI virtualization that occurs at the VM level. This difference results in some limitations around MSCS and VMware snapshot use-case scenarios.

NetApp enhances the use of RDMs by providing array-based LUN-level thin provisioning, production-use data deduplication, advanced integration components such as SnapDrive®, application-specific Snapshot backups with the SnapManager for applications suite, and FlexClone® zero-cost cloning of RDM-based datasets.

Note: VMs running MSCS must use the path selection policy of most recently used (MRU). Round robin is documented by VMware as unsupported for RDM LUNs for MSCS.

2.7 DATASTORE COMPARISON TABLES

Differentiating what is available with each type of datastore and storage protocol requires considering many points. Table 1 compares the features available with each storage option. A similar chart for VMware functionality is available in the VMware ESX and ESXi Server Configuration Guide.

Table 1) Datastore supported features.

<table>
<thead>
<tr>
<th>Capability/Feature</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>VMFS or RDM</td>
<td>VMFS or RDM</td>
<td>NetApp WAFL</td>
</tr>
<tr>
<td>Maximum number of datastores or LUNs</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Maximum datastore size</td>
<td>64TB</td>
<td>64TB</td>
<td>16TB or 100TB¹</td>
</tr>
<tr>
<td>Maximum LUN/NAS file system size</td>
<td>2TB minus 512 bytes</td>
<td>2TB minus 512 bytes</td>
<td>16TB or 100TB¹</td>
</tr>
</tbody>
</table>
Capability/Feature

<table>
<thead>
<tr>
<th>Function</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal queue depth per LUN/file system</td>
<td>64</td>
<td>64</td>
<td>N/A</td>
</tr>
<tr>
<td>Available link speeds</td>
<td>4Gb and 8Gb FC and 10 Gigabit Ethernet (10GbE)</td>
<td>1GbE and 10GbE</td>
<td>1GbE and 10GbE</td>
</tr>
</tbody>
</table>

1. 100TB requires 64-bit aggregates.

Table 2) VMware supported storage-related functionality.

<table>
<thead>
<tr>
<th>Function</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>vMotion</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Storage vMotion</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VMware HA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DRS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VCB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MSCS within a VM</td>
<td>Yes, using RDM for shared LUNs</td>
<td>Initiator in guest operating system (GOS) is supported by NetApp</td>
<td>Not supported</td>
</tr>
<tr>
<td>Fault tolerance</td>
<td>Yes with eager-zeroed thick VMDKs or virtual-mode2 RDMs</td>
<td>Yes with eager-zeroed thick VMDKs or virtual-mode2 RDMs</td>
<td>Yes with eager-zeroed thick VMDKs</td>
</tr>
<tr>
<td>Site Recovery Manager</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Thin-provisioned VMs (virtual disks)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes'</td>
</tr>
<tr>
<td>VMware native multipathing</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Boot from SAN</td>
<td>Yes</td>
<td>Yes with HBAs</td>
<td>No</td>
</tr>
</tbody>
</table>

1. This is the default setting for all VMs on NetApp NFS.

Table 3) NetApp supported storage management features.

<table>
<thead>
<tr>
<th>Function</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data deduplication</td>
<td>Savings in the array</td>
<td>Savings in the array</td>
<td>Savings in the datastore</td>
</tr>
<tr>
<td>Thin provisioning</td>
<td>Datastore or RDM</td>
<td>Datastore or RDM</td>
<td>Datastore</td>
</tr>
<tr>
<td>Resize datastore</td>
<td>Grow only</td>
<td>Grow only</td>
<td>Grow, autogrow, and shrink</td>
</tr>
<tr>
<td>Thin provisioning</td>
<td>Datastore or RDM</td>
<td>Datastore or RDM</td>
<td>Datastore</td>
</tr>
<tr>
<td>SANscreen VM Insight</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SnapDrive (in guest)</td>
<td>Yes</td>
<td>Yes</td>
<td>No'</td>
</tr>
</tbody>
</table>
Capability/Feature

<table>
<thead>
<tr>
<th>Capability/Feature</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESX Host Utilities Virtual Storage Console (VSC 2.0)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VM backup and recovery using VSC 2.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Provisioning and cloning using VSC 2.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Support for NFS-managed VMDKs in SnapDrive is targeted for a future release of SnapDrive.

Table 4 Supported backup features.

<table>
<thead>
<tr>
<th>Capability/Feature</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshot backups</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Replicated backups support SRM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SnapMirror<sup>®</sup></td>
<td>Datastore or RDM</td>
<td>Datastore or RDM</td>
<td>Datastore or VM</td>
</tr>
<tr>
<td>SnapVault<sup>®</sup></td>
<td>Datastore or RDM</td>
<td>Datastore or RDM</td>
<td>Datastore or VM</td>
</tr>
<tr>
<td>VMDK image access</td>
<td>VCB</td>
<td>VCB</td>
<td>VCB, VIC File Explorer</td>
</tr>
<tr>
<td>VMDK file-level access</td>
<td>VCB, Windows only</td>
<td>VCB, Windows only</td>
<td>VCB and third-party apps</td>
</tr>
<tr>
<td>NDMP granularity</td>
<td>Datastore</td>
<td>Datastore</td>
<td>Datastore or VM</td>
</tr>
</tbody>
</table>

2.8 VMWARE VIRTUAL DISK FORMATS

Three types of virtual disks are available to VMs in vSphere. You should become familiar with all of them, including their similarities, differences, weaknesses, and strengths.

THICK VIRTUAL DISK

The thick virtual disk is the traditional virtual disk format that most of us have deployed with most of our VMs. This format preallocates the capacity of the virtual disk from the datastore at the time it is created. This format does not format the VMDK at the time of deployment. This means that data that needs to be written must pause while the blocks required to store the data are zeroed out. The operation occurs on demand any time an area of the virtual disk that has never been written to is required to store data.

Figure 5) A thick VMDK as it relates to storage blocks on an array.

![Thick VMDK](https://via.placeholder.com/150)
THIN VIRTUAL DISK

The thin virtual disk is very similar to the thick format, with the exception that it does not preallocate the capacity of the virtual disk from the datastore when it is created. When storage capacity is required, the VMDK allocates storage in chunks equal to the size of the file system block. For VMFS, this is from 1MB through 8MB (size selected at deployment), and for NFS it is 4KB. The process of allocating blocks on a shared VMFS datastore is considered a metadata operation and as such executes SCSI locks on the datastore while the allocation operation is executed. Although this process is very brief, it does suspend the write operations of the VMs on the datastore.

Figure 6) A thin VMDK as it relates to storage blocks on an array.

Similar to the thick format, thin VMDKs are not formatted at the time of deployment. Therefore, data that needs to be written must pause while the blocks required to store the data are zeroed out. The process of allocating blocks from within the datastore occurs on demand any time a write operation attempts to store data in a block range inside the VMDK that has not been written to by a previous operation.

To summarize the zeroing out and allocation differences between a thick and thin virtual disk, just remember that both suspend I/O when writing to new areas of disk that need to be zeroed. However, before this can occur with a thin virtual disk, it might also have to obtain additional capacity from the datastore.

EAGER-ZEROED THICK VIRTUAL DISK

The eager-zeroed thick virtual disk is similar to the thick format because it preallocates the capacity of the virtual disk from the datastore when it is created. However, unlike the thick and thin formats, an eager-zeroed thick virtual disk actually formats all of its data blocks at the time of deployment. This virtual disk format does not include or require the allocation and zeroing on-demand processes.

Figure 7) An eager-zeroed thick VMDK as it relates to storage blocks on an array.
2.9 INCREASING STORAGE USE

NetApp offers storage virtualization technologies that can enhance the storage savings provided by VMware thin-provisioning technology. FAS data deduplication and thin provisioning for VMFS datastores and RDM LUNs offer considerable storage savings by increasing storage use of the FAS array. Both of these technologies are native to NetApp arrays and do not require any configuration considerations or changes to be implemented within the ESX servers.

By using the storage savings technologies of NetApp with VMware, you can increase server hardware use to match that of its physical servers. Reducing storage hardware results in reduced acquisition and operational costs.

Note: All virtual disks stored on NetApp NFS are thin-provisioned VMDKs and provide VMware clustering support.

Figure 8) VMs deployed on NetApp NFS are always thin provisioned and provide clustering support.

2.10 STORAGE ARRAY THIN PROVISIONING

You should be very familiar with traditional storage provisioning and with the manner in which storage is preallocated and assigned to a server or, in the case of VMware, a VM. It is also a common practice for server administrators to overprovision storage to avoid running out of storage and the associated application downtime when expanding the provisioned storage. Although no system can run at 100% storage use, methods of storage virtualization allow administrators to address and oversubscribe storage in the same manner as with server resources (such as CPU, memory, networking, and so on). This form of storage virtualization is referred to as *thin provisioning*.

Traditional provisioning preallocates storage; thin provisioning provides storage on demand. The value of thin-provisioned storage is that storage is treated as a shared resource pool and is consumed only as
each individual VM requires it. This sharing increases the total usage rate of storage by eliminating the unused but provisioned areas of storage that are associated with traditional storage. The drawback to thin provisioning and oversubscribing storage is that (without the addition of physical storage) if every VM requires its maximum possible storage at the same time, there will not be enough storage to satisfy the requests.

NETAPP THIN-PROVISIONING OPTIONS

NetApp thin provisioning extends VMware thin provisioning for VMDKs. It also allows LUNs that are serving VMFS datastores to be provisioned to their total capacity while consuming only as much storage as is required to store the VMDK files (which can be either a thick or thin format). In addition, LUNs connected as RDMs can be thin provisioned.

When you enable NetApp thin-provisioned LUNs, NetApp recommends deploying these LUNs in FlexVol® volumes that are also thin provisioned with a capacity that is 2x the size of the LUN. By deploying a LUN in this manner, the FlexVol volume acts merely as a quota. The storage consumed by the LUN is reported in FlexVol and its containing aggregate.

2.11 STORAGE ARRAY DATA DEDUPLICATION

One of the most popular VMware features is the ability to rapidly deploy new VMs from stored VM templates. A VM template includes a VM configuration file (.vmx) and one or more virtual disk files (.vmdk), which include an operating system, common applications, and patch files or system updates. Deploying from templates saves administrative time by copying the configuration and virtual disk files and registering this second copy as an independent VM. By design, this process introduces duplicate data for each new VM deployed. Figure 9 shows an example of typical storage consumption in a vSphere deployment.

![Figure 9) Storage consumption with a traditional array.](image)

NetApp offers a data deduplication technology called **FAS data deduplication**. With NetApp FAS deduplication, VMware deployments can eliminate the duplicate data in their environment, enabling greater storage use. Deduplication virtualization technology enables multiple VMs to share the same physical blocks in a NetApp FAS system in the same manner that VMs share system memory. It can be seamlessly introduced into a virtual data center without having to make any changes to VMware.
administration, practices, or tasks. Deduplication runs on the NetApp FAS system at scheduled intervals and does not consume any CPU cycles on the ESX server. Figure 10 shows an example of the impact of deduplication on storage consumption in a vSphere deployment.

Deduplication is enabled on a volume, and the amount of data deduplication realized is based on the commonality of the data stored in a deduplication-enabled volume. For the largest storage savings, NetApp recommends grouping similar operating systems and similar applications into datastores, which ultimately reside on a deduplication-enabled volume.

Figure 10) Storage consumption after enabling FAS data deduplication.

DEDUPLICATION CONSIDERATIONS WITH VMFS AND RDM LUNS

Enabling deduplication when provisioning LUNs produces storage savings. However, the default behavior of a LUN is to reserve an amount of storage equal to the provisioned LUN. This design means that although the storage array reduces the amount of capacity consumed, any gains made with deduplication are for the most part unrecognizable, because the space reserved for LUNs is not reduced.

To recognize the storage savings of deduplication with LUNs, you must enable NetApp LUN thin provisioning.

Note: Although deduplication reduces the amount of consumed storage, the VMware administrative team does not see this benefit directly, because its view of the storage is at a LUN layer, and LUNs always represent their provisioned capacity, whether they are traditional or thin provisioned. The NetApp Virtual Storage Console (VSC) provides the VI administrator with the storage use at all layers in the storage stack.

When you enable dedupe on thin-provisioned LUNs, NetApp recommends deploying these LUNs in FlexVol volumes that are also thin provisioned with a capacity that is 2x the size of the LUN. When the LUN is deployed in this manner, the FlexVol volume acts merely as a quota. The storage consumed by the LUN is reported in FlexVol and its containing aggregate.

DEDUPLICATION ADVANTAGES WITH NFS

Unlike with LUNs, when deduplication is enabled with NFS, the storage savings are immediately available and recognized by the VMware administrative team. The benefit of dedupe is transparent to storage and VI administrative teams. Special considerations are not required for its usage.
DEDUPLICATION MANAGEMENT WITH VMWARE

Through the NetApp vCenter plug-ins, VMware administrators have the ability to enable, disable, and update data deduplication on a datastore-by-datastore basis. The details on this capability are covered in the vSphere Dynamic Storage Provisioning and Management section of this report.

2.12 VSTORAGE ARRAY INTEGRATION IN VMWARE VSPHERE 4.1

With the release of vSphere 4.1, VMware has delivered a set of storage constructs enhancing storage array integration in vSphere. These enhancements consist of three main components:

- vStorage APIs for array integration
- Storage I/O control
- Storage performance statistics

VSTORAGE APIS FOR ARRAY INTEGRATION

vStorage APIs for array integration (VAAI) provide a mechanism for the acceleration of certain functions typically performed at the hypervisor by offloading these operations to the storage array. The goal of VAAI is to enable greater scalability at the host layer by freeing hypervisor resources (CPU, memory, I/O, and so on) during operations such as provisioning and cloning. This first release of VAAI provides support for new features only in VMFS datastores. In the case of NFS datastores on NetApp storage, many operations with respect to VM provisioning and cloning are already offloaded to the storage array with the combined capabilities of the VSC and file-level FlexClone. The initial release of VAAI expands VMFS to include similar capabilities. The current release of VAAI has three capabilities:

- **Full copy.** When a data copy is initiated from the ESX/ESXi host, VAAI enables the storage array to perform that copy within the array, without the host having to read and write the data. This reduces the time and network load of cloning and migrating VMs with vMotion.
- **Block zeroing.** When a new virtual disk is created, such as an eager-zeroed thick VMDK, the disk must be formatted and written full of zeroes. VAAI allows the storage array to format zeroes into the disks, removing this workload from the host.
- **Hardware-assisted locking.** VMFS is a shared cluster file system. Therefore, it requires management of metadata and locking to make sure that multiple hosts do not gain write access to the same data simultaneously. VAAI provides an alternative method of locking to that of SCSI-2 reservations used in previous releases. This new method of locking is managed automatically by the host and storage array and allows for greater scalability of VMFS datastores.

VAAI support requires that the storage array is running an operating system version that provides support. To use VAAI, the NetApp array must be running NetApp Data ONTAP version 8.0.1. VAAI is enabled by default in Data ONTAP and in ESX/ESXi. Version 2.0 of the VSC indicates whether or not a storage array supports VAAI and if VAAI is enabled on that array.

STORAGE I/O CONTROL

The storage I/O control (SIOC) feature introduced in vSphere 4.1 enables quality of service control for storage using the concepts of shares and limits in the same way CPU and memory resources have been managed in the past. SIOC allows the administrator to make sure that certain VMs are given priority access to storage compared to other VMs, based on the allocation of resource shares, maximum IOPS limits, and whether or not the datastore has reached a specified congestion threshold. SIOC is currently only supported on FC or iSCSI VMFS datastores.

To use SIOC, it must first be enabled on the datastore, and then resource shares and limits must be applied to the VMs in that datastore. The VM limits are applied on the Resources tab in the VM Edit Settings dialog window. By default, all VMs in the datastore are given equal resource shares and unlimited IOPS.
SIOC does not take action to limit storage throughput of a VM based on the value of its resource shares until the datastore congestion threshold is met. As long as the overall performance of the datastore is sufficient, according to the threshold, all VMs on the datastore have equal access to the storage. The congestion threshold is set per datastore in a value of milliseconds of latency. The default value is 30ms, and most environments do not need to adjust this value. Storage resource shares are set in values of low, normal, and high (these values are 500, 1,000, and 2,000, respectively), or a custom value may be set.

The amount of resource shares is used to determine how much throughput one VM is given compared to another VM on the same datastore in which SIOC is enabled. For example, when SIOC limitations are imposed on the datastore, a VM with 1,000 shares is entitled to twice the access to resources as a VM with 500 shares. The actual amount of throughput achievable by each VM is dependent on the demands of the VMs. Viewing the share settings of multiple VMs can be done in the vSphere client datastores view by selecting a datastore and then the Virtual Machine tab.

The access of a VM to a datastore can also be limited to a maximum storage IOPS. Setting a maximum IOPS limit on a VM causes vSphere to continuously limit the throughput of that VM to that number of IOPS, even if the congestion threshold has not been surpassed. To limit a VM to a certain amount of throughput in MB/sec, you must use the IOPS limit by setting an appropriate maximum IOPS value according to the VM’s typical I/O size. For example, to limit a VM with a typical I/O size of 8k to 10MB/sec of throughput, set the maximum IOPS for the VM to 1,280. The following formula may be used: MB/sec ÷ I/O size = IOPS. For example: 10,240,000 ÷ 8,000 = 1,280.

STORAGE PERFORMANCE STATISTICS
An additional storage enhancement in vSphere 4.1 is an increase in available storage performance statistics available both in vCenter and by using the esxtop command. In VI3 environments, gathering storage performance metrics directly in vCenter was limited to viewing the performance of specific physical disks. This allowed some monitoring of storage performance per datastore on NetApp storage arrays because a typical FC datastore in a NetApp environment is made up of one LUN presented from the storage system and would be represented as one physical disk in the vCenter performance monitor. Isolating complete datastore performance was difficult when multiple disks or LUNs were used to make up one datastore. This limitation continued into vSphere 4.0. Additionally, the ability to view metrics per NFS datastore or individual virtual disks attached to VMs was not available in both VI3 and vSphere 4.0. The metrics viewable for hosts and VMs in vSphere 4.0 are shown in Figure 12.
The additional performance statistics available in vSphere 4.1 allow the virtual administrator to view host I/O statistics per datastore storage path and per storage adapter in FC environments. Datastore performance reporting is available with all storage protocols: FC, iSCSI, and NFS. VM performance metrics now include datastore performance per VM and performance per virtual disk. Figure 13 shows the additional performance metrics available in vSphere 4.1.

A particular challenge in NAS environments has been the inability to determine which NFS datastores are most active or which virtual disks of a VM are most active. Figure 14 shows an example of the per virtual disk metrics in vSphere 4.1.
Figure 14) Per virtual disk performance statistics available in vSphere 4.1.

Table 5 shows the storage performance statistic capabilities by protocol and by vSphere version.

Table 5) Storage performance statistic capabilities by protocol and vSphere version.

<table>
<thead>
<tr>
<th>Object</th>
<th>Component</th>
<th>Statistic</th>
<th>Storage Protocol</th>
<th>Available In vCenter</th>
<th>ESXTOP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESX/ESXi host</td>
<td>Datastore</td>
<td>Throughput and latency</td>
<td>FC, iSCSI, NFS</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Storage adapter</td>
<td>Throughput and latency</td>
<td>FC</td>
<td>4.1</td>
<td>4.0+</td>
</tr>
<tr>
<td></td>
<td>Storage path</td>
<td>Throughput and latency</td>
<td>FC</td>
<td>4.1</td>
<td>4.0+</td>
</tr>
<tr>
<td></td>
<td>LUN</td>
<td>Throughput and latency</td>
<td>FC, iSCSI</td>
<td>4.0+</td>
<td>4.0+</td>
</tr>
<tr>
<td>Virtual machine</td>
<td>Datastore</td>
<td>Throughput and latency</td>
<td>FC, iSCSI, NFS</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Virtual disk</td>
<td>Throughput and latency</td>
<td>FC, iSCSI, NFS</td>
<td>4.1</td>
<td>4.1</td>
</tr>
</tbody>
</table>

* Access to esxtop for ESXi hosts requires the use of the vSphere command line interface (CLI) resxtop command.
3 STORAGE NETWORK DESIGN AND SETUP

This section applies to:

- Storage administrators
- VI administrators
- Network administrators

The goal of any storage network is to provide uninterrupted service to all nodes that connect to it. In this section, we focus primarily on how to establish a highly available Ethernet storage network. The reasons for focusing on Ethernet are twofold. First, FC storage networks provide a single service, Fibre Channel. Therefore, these single-purpose networks are simpler to design and deploy in a highly available configuration. Second, the current industry trend is solely focused on multipurposed Ethernet networks (converged networks) that provide storage, voice, and user access.

PRODUCTION STORAGE NETWORKS

Regardless of protocol, a storage network must address the following three goals:

- Be redundant across switches in a multiswitch environment.
- Use as many available physical paths as possible.
- Be scalable across multiple physical interfaces or ports.

3.1 SAN AND NAS STORAGE NETWORKING BASICS

With vSphere, the primary difference between SAN and NAS is in the area of multipathing. In the current versions of ESX/ESXi, NFS requires manual static path configuration, whereas iSCSI, FC, and FCoE are available with both manual and automated multipathing options.

Note: iSCSI requires additional configuration options prior to implementing.

Multipathing and datastore security in the form of NFS exports (iSCSI, FC, and FCoE) and LUN masking are dynamically assigned when the VMware administrative team provisions storage. The details of this automation are covered with the Rapid Cloning Utility (RCU) in the vSphere Dynamic Storage Provisioning and Management section of this report.

3.2 FIBRE CHANNEL STORAGE NETWORKING BASICS

FC storage networks make up a large percentage of mature VMware storage infrastructures. This market share is attributed to FC being the first network-attached storage (NAS) protocol supported by ESX in version 2.0. Although FC is a well-known and mature technology, this section covers best practices for deploying VMware on FC with NetApp storage arrays.
CONNECTIVITY BASICS

ESX servers and NetApp storage arrays connect to a SAN fabric using host bus adapters (HBAs). Connectivity to FCoE fabrics is enabled through converged network adapters (CNAs). Each HBA/CNA can run as either an initiator (ESX/ESXi) or a target (NetApp). Each adapter has a global unique address referred to as a World Wide Name (WWN). Each WWN must be known to configure LUN access on a NetApp storage array.

Both NetApp and VMware highly recommend that as a best practice each ESX/ESXi host should have at least two adapter ports. For more information on VMware FC best practices and recommendations, refer to the VMware Fibre Channel SAN Configuration Guide.

FABRIC ZONING RECOMMENDATION

Many devices and nodes can be attached to a SAN. Implementing zones is a method used to secure access and optimize I/O access to these devices. SAN zoning is a method of arranging FC devices into logical groups over the physical configuration of the fabric or FC network.

Zoning is available in hardware (hard zoning) or in software (soft zoning). An option available with both implementations is port zoning. With this option, physical ports define security zones. A host’s access to a LUN is determined by what physical port it connects to. With port zoning, zone information must be updated every time a user changes switch ports. In addition, port zoning does not allow zones to overlap.

Another form of zoning is WWN zoning, where the fabric leverages its name servers to either allow or block access to particular World Wide Port Names (WWPNs) in the fabric. A major advantage of WWPN zoning is the ability to recable the fabric without having to modify the zone members.

NetApp and VMware highly recommend that customers implement "single-initiator, multiple-storage target" zones. This design offers an ideal balance of simplicity and availability with FC and FCoE deployments. For assistance in identifying the WWN or IQN of the ESX server, complete the following steps:

1. Select Storage Adapters on the Configuration tab for each ESX/ESXi host in vCenter Server.
2. Refer to the WWN identifier column.

Figure 15) Identifying WWPN and IQN numbers in the vCenter client.
3.3 ETHERNET STORAGE NETWORKING BASICS

10GBE OR DATA CENTER ETHERNET

NetApp Data ONTAP and VMware ESX/ESXi 4 both provide support for 10GbE. An advantage of 10GbE is the ability to reduce the number of network ports in the infrastructure, especially for blade servers. To verify support for your hardware and its use for storage I/O, refer to the VMware Compatibility Guide.

VLAN TAGGING OR 802.1Q

When segmenting network traffic with VLANs, interfaces either can be dedicated to a single VLAN or can support multiple VLANs with VLAN tagging.

For systems that have fewer NICs, such as blade servers, VLANs can be very useful. Channeling two NICs together provides an ESX server with physical link redundancy. By adding multiple VLANs, you can group common IP traffic onto separate VLANs for optimal performance. NetApp recommends that the service console access with the VM network should be on one VLAN, and the VMkernel activities of IP storage and vMotion should be on a second VLAN.

VLANs and VLAN tagging also play a simple but important role in securing an IP storage network. NFS exports can be restricted to a range of IP addresses that are available only on the IP storage VLAN. In addition, NetApp storage also allows the restriction of the iSCSI protocol to specific interfaces and/or VLAN tags. These simple configuration settings have an enormous effect on the security and availability of IP-based datastores. If you are using multiple VLANs over the same interface, make sure that sufficient throughput can be provided for all traffic.

FLOW CONTROL

Flow control is a low-level process for managing the rate of data transmission between two nodes to prevent a fast sender from overrunning a slow receiver. Flow control can be configured on ESX/ESXi servers, FAS storage arrays, and network switches. For modern network equipment, especially 10GbE equipment, NetApp recommends turning off flow control and allowing congestion management to be performed higher in the network stack. For older equipment, typically GbE with smaller buffers and weaker buffer management, NetApp recommends configuring the endpoints, ESX servers, and NetApp arrays with the flow control set to "send."

Flow control can be configured on FAS storage ports by using FilerView® or NetApp System Manager (see Figure 16). Note that the X1139A/X1140A Unified Target Adapter can only be configured for “full” flow control.
Flow control can be configured in ESX and ESXi either by using the ethtool command or by configuring the driver module with esxcfg-module, depending on the particular NIC and version of ESX. In most cases, ethtool will work as follows:

```
[root@esx8 ~]# ethtool -A vmnic2 autoneg off rx off tx off
```

The settings can be checked as follows:

```
[root@esx8 ~]# ethtool -a vmnic2
Pause parameters for vmnic2:
Autonegotiate: off
RX: off
TX: off
```

Autonegotiate must be disabled for RX and TX settings to take effect. Note that autonegotiate in this command only applies to flow control, not speed or duplex as the term more commonly implies. These commands must be added to /etc/rc.local to make them persistent across reboots.

For details on setting flow control in vSphere, including using esxcfg-module for Intel® NICs that use the e1000 driver, refer to VMware KB 1013413.
For modern network switches, NetApp recommends disabling flow control by configuring ports as “send off” and “receive off.”

For older network switches, NetApp recommends either setting the switch ports connecting to the ESX hosts and FAS storage arrays to “Desired” or, if this mode is not available, setting these ports to “send off” and “receive on.” The switch ports are configured with settings opposite to those of the ESX/ESXi and FAS systems.

Figure 17) Configuring flow control settings with older network equipment.

SPANNING TREE PROTOCOL
Spanning Tree Protocol (STP) is a network protocol that provides a loop-free topology for any bridged LAN. In the OSI model for computer networking, STP falls under the OSI Layer 2. STP allows a network design to include spare (redundant) links to provide automatic backup paths if an active link fails, without the danger of bridge loops or the need for manual enabling or disabling of these backup links. Bridge loops must be avoided because they result in flooding the network.

When connecting ESX and NetApp storage arrays to Ethernet storage networks, NetApp highly recommends configuring the Ethernet ports to which these systems connect as either RSTP edge ports or by using the Cisco® feature portfast. If your environment uses the Cisco portfast feature and you have 802.1Q VLAN trunking enabled to either the ESX server or the NetApp storage arrays, NetApp recommends enabling the spanning-tree portfast trunk feature.

When a port is configured as an edge port on an RSTP-enabled switch, the edge port immediately transitions its forwarding state to active. This immediate transition was previously recognized as a Cisco proprietary feature named portfast. Ports that connect to other switch ports should not be configured with the edge port or portfast feature.

ROUTING AND IP STORAGE NETWORKS
Whenever possible, NetApp recommends configuring storage networks as a single network that does not route. This model helps to provide good performance and a layer of data security.

ENABLING JUMBO FRAMES
In Ethernet networking, the maximum transmission unit (MTU) is the size of the largest unit that the layer can forward. The standard MTU size is 1,500 bytes. In an effort to reduce the number of data units and the processing associated with each, some prefer to use a large packet size. This is referred to as a jumbo frame, and it is commonly 9,000 bytes.

Enabling jumbo frames requires making manual changes to all networking devices between ESX and storage, and therefore its use should be considered prior to being enabled.
Note: FCoE uses what is referred to as a baby jumbo frame (MTU size of 2,112), and its use is automatically enabled by network devices that support FCoE.

When enabling jumbo frames throughout an infrastructure, there are two classifications of devices. Those classifications are devices that transmit jumbo frames (NetApp storage, ESX server) and devices that transport jumbo frames (Ethernet switches). Some devices that transmit jumbo frames are configured to use VLAN trunking, and other devices are not. An Ethernet frame consists of a payload, Ethernet header (18 bytes), and sometimes a VLAN tag (4 bytes, if enabled). Generally, a user administratively defines the payload size for devices that transmit jumbo frames. The system then appends the Ethernet header and VLAN tag, causing the frame, which is transmitted from the device, to range from 9,018 bytes or 9,022 bytes (with VLAN tagging). Because of this frame size variation, a best practice is to set the devices that transport jumbo frames (Ethernet switches) to their maximum allowable setting.

That maximum is typically 9,216 bytes in today’s modern data center–class switches. If the switching infrastructure being used does not accommodate this size, you must verify the endpoint frame size you configure and append the Ethernet header and VLAN tag. If your infrastructure is not configured to accommodate the payload plus header and VLAN tag, your environment either will not successfully negotiate communications or will suffer severe performance penalties.

Figure 18) An overview of the MTU size required with jumbo frames.

ESX/ESXi hosts require creating a vSwitch that supports jumbo frames followed by a VMkernel port, which is assigned to the vSwitch.

To enable jumbo frames on a vSwitch and set the appropriate MTU size, complete the following steps:

1. Connect to an ESX/ESXi host (using the vSphere CLI).
2. Execute the following command to configure the MTU size:
   ```
   vicfg-vswitch -m <MTU> <vSwitch>
   ```
 This command sets the MTU for all uplinks on that vSwitch. Set the MTU size to the largest MTU size among all the virtual network adapters connected to the vSwitch.
3. Execute the following command to verify the configuration:
   ```
   vicfg-vswitch -1
   ```

To enable jumbo frames on a VMkernel port, complete the following steps:

1. Connect to an ESX/ESXi host (using the vSphere CLI).
2. Execute the following command to configure the MTU size:
   ```
   esxcfg-vmknic -a -I <ip address> -n <netmask> -m <MTU> <port group name>
   ```
 This command creates a VMkernel port with jumbo frame support.
3. Execute the following command to verify the configuration:
esxcfg-vmknic -1

Note that in these steps, and elsewhere in this document, the esxcfg- and vicfg- commands are equivalent. Which command you use depends on whether you are logged into an ESX server using SSH (or on the physical console) or are using the vSphere CLI (available as an installable package for Windows and Linux® and as an appliance VM: vSphere Management Assistant, or vMA) to manage ESX or ESXi. In fact, on the vMA, the esxcfg-* commands are symlinks to the same vicfg-* command. More information on vMA and vSphere CLI is available as follows:

- vMA: www.vmware.com/appliances/directory/178973

To set the MTU size on a FAS array, complete the following steps (as shown in Figure 16 in the Flow Control section):

1. Open NetApp System Manager.
2. Select the network configuration for the array and the interface.
3. Select Edit.
4. Repeat these steps for each array and interface requiring jumbo frames.

SEPARATE ETHERNET STORAGE NETWORK

As a best practice, NetApp recommends separating IP-based storage traffic from public IP network traffic by implementing separate physical network segments or VLAN segments. This design follows the architecture of SCSI and FC connectivity.

Creating a second network in ESX requires creating a second vSwitch to separate the traffic onto other physical NICs. The ESX server requires a VMkernel port to be defined on the new vSwitch.

A VMware best practice for HA clusters is to define a second service console port for each ESX server. The network use for IP-based storage is a convenient network that you can use to add this second SC port.

With this design, NetApp recommends not allowing routing of data between the storage or VMkernel and other networks. In other words, do not define a default gateway for the VMkernel storage network. With this model, NFS deployments require defining a second service console port on the VMkernel storage virtual switch within each ESX server.

IP storage network, or VMkernel, connectivity can be verified by the use of the `vmkping` command. With NFS connected datastores, the syntax to test connectivity is `vmkping <NFS IP address>`.

NETAPP VIRTUAL INTERFACES (ETHERCHANNEL)

A virtual network interface (VIF) or EtherChannel is a mechanism that supports aggregation of network interfaces into one logical interface unit. Once created, a VIF is indistinguishable from a physical network interface. VIFs are used to provide fault tolerance of the network connection and in some cases higher throughput to the storage device.

NetApp enables the use of two types of load-balancing VIFs: manual multimode and dynamic LACP (IEEE 802.3ad). NetApp also provides an active-passive form of VIF, referred to as a single-mode VIF. NetApp VIFs may also be grouped and layered into a form of a second-level VIF, referred to in this document as layered multimode EtherChannel.

Multimode VIFs are static configured EtherChannels. In a multimode VIF, all of the physical connections in the VIF are simultaneously active and can carry traffic. This mode requires connecting all of the interfaces to a switch that supports trunking or aggregation over multiple port connections. The switch must be configured to understand that all the port connections share a common MAC address and are
part of a single logical interface. If a physical interface failure results in the loss of link, the VIF automatically transmits traffic onto the surviving links in the VIF without loss of connectivity.

LACP VIFs are dynamic (IEEE 802.3ad) compliant EtherChannels. In an LACP VIF, all of the physical connections are simultaneously active and carry traffic, similar to the previously described multimode VIFs. LACP VIFs introduce signaling transmissions between the storage controller and the network switch. This signaling informs the remote channeling partner of the link status. If a failure or inability to transmit data on a link is observed, the device identifying this problem informs the remote channeling partner of the failure, causing the removal of the interface from the EtherChannel. This feature differs from standard multimode VIFs in that there is no signaling between channel partners to inform the remote partner of link failure. The only means for an interface to be removed from a standard multimode VIF is a loss of link.

Multimode and LACP EtherChannels both use the same algorithms for determining IP load balancing. These algorithms are based on source and destination IP, MAC address, or TCP/UDP port number. NetApp recommends using IP-based source and destination load balancing, especially when the network is designed to route storage traffic as it provides load-balancing capabilities, which works in the broadest set of storage network configurations.

In a single-mode VIF, only one of the physical connections is active at a time. If the storage controller detects a fault in the active connection, a standby connection is activated. A configuration is not necessary on the switch to use a single-mode VIF, and the physical interfaces that make up the VIF do not have to connect to the same switch.

Note: IP load balancing is not supported on single-mode VIFs.

3.4 CISCO NEXUS 1000V VNETWORK DISTRIBUTED SWITCH RECOMMENDATIONS

CISCO NEXUS 1000V SYSTEM VLAN

When deploying the Cisco Nexus® 1000V vNetwork Distributed Switch (vDS), be aware that it is composed of two components, the Virtual Supervisor Module (VSM) and the Virtual Ethernet Module (VEM).

The VSM runs as a VM and is the brains of the operation with a 1000V. Traffic continues if the VSM fails; however, management of the vDS is suspended. VSMs should be deployed in an active-passive pair. These two VSAs should never reside on the same physical ESX server. This configuration can be controlled by DRS policies.

The VEM is embedded in all ESX/ESXi hosts, and it is managed by the VSM. One exists for each host in the cluster that is participating in the Cisco Nexus 1000V vDS.

If a VSM is managing the links to the datastore that stores the VSM VM, the VSM failover process might possibly not occur. To avoid this scenario, NetApp and Cisco recommend making sure that all service console and VMkernel interfaces (vswif and vmknic) reside on a system VLAN. System VLANs are defined by an optional parameter that can be added in a port profile. Do not configure a VM network as a system VLAN.

ENABLING JUMBO FRAMES

Although the Cisco Nexus 1000V vDS supports the use of jumbo frames, it lacks the ability to create or enable jumbo frames on VMkernel interfaces. To use jumbo frames with VMkernel ports, you must first create a traditional vSwitch and VMkernel port, enable support for jumbo frames, and import these ports into a 1000V vDS. To enable jumbo frames on a vSwitch, complete the following steps:

1. Configure a vSwitch and VMkernel ports for jumbo frame support ([section 3.3](#)).
2. Connect to the ESX/ESXi host using the vCenter client.
3. Assign the VMkernel port (following the steps in the previous paragraph) to the vSwitch (created previously).

4. Migrate the vSwitch to a 1000V vDS (as shown in Figure 19).

Figure 19) Migrating a virtual adapter from a vSwitch to a 1000V.

3.5 SWITCHING CAPABILITIES DETERMINE THE STORAGE NETWORK ARCHITECTURE

The storage design you implement is dictated based on the capabilities of your network switches. The ideal configuration is to have Ethernet switches that support multiswitch link aggregation (MSLA). If you have a switch with this capability such as Cisco Nexus (virtual port channels), Cisco Catalyst® 3750 series (cross-stack EtherChannel), or Cisco Catalyst 6500 series with VSS 1440 modules (multichassis EtherChannel), the design and architecture required for your network will be rather simple.

Proceed to section 3.6 to configure this type of switching technology.
3.6 STORAGE NETWORK ARCHITECTURE WITH MULTISWITCH LINK AGGREGATION

In this configuration, the IP switches used for the Ethernet storage network support multiswitch link aggregation. Therefore, each storage controller requires one physical connection to each switch. The two ports connected to each storage controller are then combined into one multimode LACP VIF with IP load balancing enabled. This design provides multiple active connections to each storage controller, provides a means to scale throughput by simply adding more connections, and requires multiple IP addresses per controller, and each connection uses two physical links for each active network connection to achieve path high availability (HA).
ADVANTAGES OF MSLA

MSLA has the following advantages:

- Provides multiple active connections to each storage controller
- Easily scales to more connections by adding NICs and aliases
- Provides two active connections to each storage controller
- Easily scales using more connections
- Storage controller connection load balancing is automatically managed by EtherChannel IP load IP load-balancing policy
- Requires only one VMkernel port for IP storage to make use of multiple physical paths

Figure 22) Storage-side multimode VIFs using multiswitch EtherChannel.

STORAGE LOAD BALANCING

Using multiple physical paths simultaneously on an IP storage network requires EtherChannel ports and multiple IP addresses on the storage controller. This model results in a design that balances datastore connectivity across all interfaces. This balancing is handled by the RCU at the time the datastore is provisioned.

Figure 23 shows an overview of storage traffic flow when using multiple ESX servers and multiple datastores.
CONFIGURING NETAPP STORAGE NETWORK PORTS

If you plan to deploy with IP-based storage access, NFS, or iSCSI, then you must configure multiple Ethernet links to operate together as an EtherChannel. EtherChannel provides aggregated bandwidth and link availability from the network switches to the storage controller. This design is recommended because the storage controller handles the aggregated I/O load from all ESX/ESXi nodes.

NetApp supports all modes of EtherChannels that are compliant with 802.3ad LACP and/or static EtherChannels. In Data ONTAP, EtherChannels are referred to as virtual interfaces (VIFs). NetApp recommends that you configure your EtherChannel or VIFs as LACP whenever possible.

For use in an MSLA configuration, you must create a multilink EtherChannel or VIF that is configured with multiple IP addresses. The number of IP addresses should be roughly equal to the number of vmnics used for storage I/O in the ESX/ESXi hosts. This process is completed in the NetApp System Manager (NSM).
Figure 24) Creating an LACP EtherChannel port with two physical NICs on the first storage controller.

Note: When creating the first EtherChannel on the first controller of an HA storage array, you have to either not select a partner or select an unused physical network interface card (NIC) as the partner interface because an EtherChannel is not yet configured on the second storage controller. After the second EtherChannel is configured, you have to return to the first controller and edit the partner interface for the EtherChannel created on the first controller.
Figure 25) Completing the process of creating an LACP EtherChannel port with two physical NICs on the first storage controller.
Figure 26) Completing the process of creating an LACP EtherChannel port with two physical NICs on the second storage controller. Note that the EtherChannel on the first controller can be selected as a partner interface.

Figure 27) Completing the process of creating an LACP EtherChannel. On the first controller, the partner interface is set to the EtherChannel configured on the second array. Additional IP addresses can also be added by editing the EtherChannel.
CONFIGURING ESX/ESXI VMKERNEL STORAGE NETWORK PORTS

If the switches used for IP storage networking support multiswitch EtherChannel trunking or virtual port channeling, then each ESX server needs one physical connection to each switch in the stack with IP load balancing enabled. One VMkernel port with one IP address is required. Multiple datastore connections to the storage controller using different target IP addresses are necessary to use each of the available physical links.

In the ESX server configuration, shown in Figure 28, a vSwitch (named vSwitch1) has been created specifically for IP storage connectivity. Two physical adapters have been configured for this vSwitch (in this case, vmnic1 and vmnic2). Each of these adapters is connected to a different physical switch, and the switch ports are configured into a cross-stack EtherChannel trunk.

Note: At this time, VMware does not support LACP or IEEE 802.3ad, which is the dynamic negotiation of Ethernet trunks.

![Figure 28: ESX server physical NIC connections with multiswitch EtherChannel.](image)

In vSwitch1, one VMkernel port has been created (VMkernel 1) and configured with one IP address, and the NIC teaming properties of the VMkernel port have been configured as follows:

- **VMkernel 1.** IP address set to 192.168.1.101.
- **VMkernel 1 port properties.** Load-balancing policy set to “Route based on ip hash.”
3.7 STORAGE NETWORK ARCHITECTURE WITH TRADITIONAL ETHERNET SWITCHES

In this configuration, the IP switches do not support multiswitch link aggregation, so each storage controller requires four physical network connections. This design provides multiple active connections to each storage controller, provides a means to scale throughput by simply adding more connections, and requires multiple IP addresses per controller. Each host uses two physical links for each active network connection to achieve path HA.

SINGLE-MODE DESIGN

The single-mode design requires configuring each pair of network links as a single-mode (active-passive) EtherChannel or VIF. Each VIF has a connection to both switches and has a single IP address assigned to it, providing two IP addresses on each controller. The vif favor command is used to force each VIF to use the appropriate switch for its active interface. This option is preferred due to its simplicity and the lack of any special configuration on the network switches.

ADVANTAGES OF USING SINGLE-MODE ETHERCHANNEL

- Provides two active connections to each storage controller (but only one active path per datastore).
- Easily scales to more connections.
- Storage controller connection load balancing is an automatically managed virtual port load-balancing policy. This is a non-EtherChannel solution.
- Switch-side configuration is not required.
- Access from the ESX/ESXi to the datastore does not require a multiswitch hop.
DISADVANTAGES OF USING SINGLE-MODE ETHERCHANNEL

- Requires the configuration of at least two VMkernel IP storage ports.
- Data I/O to a single IP is not aggregated over multiple links without addition of more links.

Figure 30) Storage-side single-mode VIFs.

LAYERED MULTIMODE DESIGN

A network diagram that depicts a layered multimode storage network architecture is shown in TR-3880: CLI Configuration Processes for NetApp and VMware vSphere Storage Arrays Running Data ONTAP and ESX/ESXi Server for customers who prefer that type of design.

STORAGE LOAD BALANCING

Using multiple physical paths simultaneously on an IP storage network requires EtherChannel ports and multiple IP addresses on the storage controller and multiple VMkernel ports defined for storage I/O in the ESX/ESXi hosts. This model results in a design that balances datastore connectivity across all interfaces. This balancing is handled by the RCU at the time the datastore is provisioned.

MULTIPLE VMKERNEL PORTS

The use of multiple VMkernel ports is a defined standard method developed by NetApp and repeated by other storage vendors offering arrays with multiprotocol access. NetApp recommends defining a separate VMkernel for each storage protocol. This method makes the configuration of iSCSI with NFS very simple. Each of these VMkernel ports supports IP traffic on a different subnet. Using different subnet addressing schemes for iSCSI and NFS provides the benefit of being able to control which VMkernel ports are used for communication of each protocol. (An example is shown in Figure 31.) Because the two VMkernel ports are in the same vSwitch, they can share the vmnics in a vSwitch.

For NFS datastores, each VMkernel port is configured with a single active vmnic, with one or more standby vmnics defined. This allows the administrator to control which vmnic is used for traffic by each VMkernel port.
Figure 31) Displaying multiple VMkernel ports for iSCSI and NFS.

Figure 32 shows an overview of storage traffic flow when using multiple ESX servers and multiple datastores.

Figure 32) Datastore connections with traditional EtherChannel.
ESX SERVER ADAPTER FAILOVER BEHAVIOR WITH iSCSI

In the case of ESX server adapter failure (due to a cable pull or NIC failure), traffic originally running over the failed adapter is rerouted and continues using the second adapter. This failover is managed by VMware native multipathing; therefore, network failover configuration is not needed on the switch or VMkernel. Traffic returns to the original adapter when service to the adapter is restored.

ESX SERVER ADAPTER FAILOVER BEHAVIOR WITH NFS

In the case of ESX server adapter failure (due to a cable pull or NIC failure), traffic originally running over the failed adapter is rerouted and continues using the second adapter, but on the same subnet where it originated. Both subnets are now active on the surviving physical adapter. Traffic returns to the original adapter when service to the adapter is restored. In this scenario, EtherChannel provides the network failover.

SWITCH FAILURE

Traffic originally running to the failed switch is rerouted and continues using the other available adapter, through the surviving switch, to the NetApp storage controller. Traffic returns to the original adapter when the failed switch is repaired or replaced.

Figure 33) ESX vSwitch1 normal-mode operation.

Figure 34) ESX vSwitch failover-mode operation.

CONFIGURING NETAPP STORAGE NETWORK PORTS

If you plan to deploy with IP-based storage access, NFS, or iSCSI, then you must configure multiple Ethernet links to operate together as an EtherChannel. EtherChannel provides aggregated bandwidth and link availability from the network switches to the storage controller. This design is recommended because the storage controller handles the aggregated I/O load from all ESX/ESXi nodes.

NetApp supports all modes of EtherChannels that are compliant with 802.3ad LACP and/or static EtherChannels. In Data ONTAP, EtherChannels are referred to as virtual interfaces (VIFs). NetApp
NetApp Storage Best Practices for VMware vSphere

recommends that you configure your EtherChannels or VIFs as single mode with traditional switches, because this is the simplest network architecture.

For use in a traditional switch configuration, you must create a single-mode EtherChannel or VIF that is configured with a single IP address. This process is completed in the NSM.

Figure 35) Creating an LACP EtherChannel port with two physical NICs on the first storage controller.

Note: There is one peculiar aspect when creating the first half of an EtherChannel on an HA storage array: You have to select a physical NIC when assigning the partner interface because an EtherChannel is not configured on the second storage controller. After the EtherChannel is configured, you have to return to the first controller and edit the partner interface for the EtherChannel created on the first controller.
Figure 36) Completing the process of creating a single-mode EtherChannel port with two physical NICs on the first storage controller.
Figure 37) Completing the process of creating a single-mode EtherChannel port with two physical NICs on the second storage controller. Note that the EtherChannel on the first controller can be selected as a partner interface.

Figure 38) Completing the process of creating a single-mode EtherChannel. On the first controller the partner interface is set to the EtherChannel configured on the second array.
CONFIGURING ESX/ESXi VMKERNEL STORAGE NETWORK PORTS

With traditional storage switches, each ESX/ESXi host must be configured with at least two VMkernel IP storage ports addressed on different subnets. As with the previous option, multiple datastore connections to the storage controller are necessary using different target IP addresses. Without the addition of a second VMkernel port, the VMkernel would simply route all outgoing requests through the same physical interface, without making use of additional vmnics on the vSwitch. In this configuration, each VMkernel port is set with its IP address on a different subnet. The target storage system is also configured with IP addresses on each of those subnets, so the use of specific vmnic interfaces can be controlled.

In the ESX/ESXi host configuration, shown in Figure 39, a vSwitch (named vSwitch1) has been created specifically for IP storage connectivity. Two physical adapters have been configured for this vSwitch (in this case, vmnic1 and vmnic2). Each of these adapters is connected to a different physical switch.

In vSwitch1, two VMkernel ports have been created (VMkernel 1 and VMkernel 2). Each VMkernel port has been configured with an IP address on a different subnet, and the NIC teaming properties of each VMkernel port have been configured as follows:

- **VMkernel 1**: IP address set to 192.168.1.101.
- **VMkernel 1 port properties**:
 - Enable the override vSwitch failover order option.
 - For NFS and iSCSI, set the active adapter to vmnic1.
 - For NFS, set the standby adapter to vmnic2.
 - For iSCSI, set the other adapters to unused.
- **VMkernel 2**: IP address set to 192.168.2.101.
- **VMkernel 2 port properties**:
 - Enable the override vSwitch failover order option.
 - For NFS and iSCSI, set the active adapter to vmnic2.
 - For NFS, set the standby adapter to vmnic1.
 - For iSCSI, set the other adapters to unused.
3.8 ENABLING MULTIPLE TCP SESSION SUPPORT FOR iSCSI

vSphere has the option of enabling the use of multiple TCP sessions with iSCSI. This feature enables round robin load balancing using VMware native multipathing and requires defining a VMkernel port for each vmnic assigned to iSCSI traffic.

For iSCSI datastores, each VMkernel port is configured with a single vmnic. Standby vmnics cannot exist in the VMkernel.

Configuring iSCSI VMkernel ports, as described in this section, results in the individual iSCSI VMkernel ports being configured without NIC teaming and therefore without any network layer redundancy. In this configuration, iSCSI redundancy is provided by the native multipathing layer in ESX/ESXi. This configuration provides iSCSI redundancy in the same way as FC redundancy. Enabling multiple TCP session support for iSCSI on ESX/ESXi hosts that also connect with NFS is not supported and should not be done, because it might result in NFS mounts occurring over the iSCSI VMkernel ports, which do not have network layer redundancy. NetApp recommends that hosts requiring the concurrent use of both iSCSI and NFS rely on the TCP layer of the network using NIC teaming for storage path redundancy, as described previously.
To create multiple iSCSI VMkernels to support multiple TCP sessions with iSCSI, complete the following steps:

1. Open vCenter Server.
2. Select an ESX host.
3. Select the Configuration tab in the right pane.
4. Select Networking in the Hardware box.
5. Click Add Networking, in the upper-right corner, to open the Add Network wizard.
6. Select the VMkernel radio button and click Next.

Note: Create a VMkernel for every Ethernet link that you want to dedicate to iSCSI traffic. VMkernels can be on different IP subnets.

7. Configure the VMkernel by providing the required network information. A default gateway is not required for the VMkernel IP storage network.

8. Configure each VMkernel to use a single active adapter that is not used by any other iSCSI VMkernel. Also, each VMkernel must not have any standby adapters. Refer to Figure 42 and Figure 43.

The software iSCSI daemon must be bound to each VMkernel. This step can only be completed using the CLI.

9. Connect to an ESX or ESXi console and run the following command:

   ```bash
esxcli swiscsi nic add -n <VMkernel ID> -d <Virtual HBA ID>
   ```

 For example:
10. Verify the iSCSI-to-VMkernel bindings. Connect to an ESX or ESXi console and run the following command:

```
esxcli swiscsi nic list -d <Virtual HBA ID>
```

For example:

```
esxcli swiscsi nic list -d vmhba33
```

Refer to Figure 44.

Figure 42 iSCSI VMkernel 0: Note active adapter vmnic0.
Figure 43) iSCSI VMkernel 1: Note active adapter vmnic1.
Figure 44) iSCSI to VMkernel bindings for use with multiple TCP sessions.
4 STORAGE ARRAY DESIGN AND SETUP

This section applies to:

Storage administrators

VI administrators

4.1 A NEW OPERATIONAL MODEL: PROVISIONING RESOURCE POOLS

The technologies available from NetApp, which are covered in this document, provide the means for a new operational model. Storage administrators can use this model to significantly simplify the support required for virtual infrastructures.

Figure 45) NetApp vCenter plug-in responsibilities.

In this new model, storage administrators are responsible for configuring the physical storage array enabling data protection and storage connectivity. Once the physical architecture is deployed, NetApp administrators supporting VMware can simply provision pools of “raw” storage resources (aggregates, FlexVol volumes, and storage network interfaces) directly for use in the virtual infrastructure.
This model significantly simplifies the tasks required by the storage administrator. It also enables the VMware administrator to provision and manage datastores and the storage constructs associated with them, such as LUN masking and storage I/O path management, directly from the physical resources assigned to the virtual infrastructure by the NetApp administrator.

This design does not prohibit IT staff from deploying and managing storage in a traditional manner, which can be described as a method in which the storage administrator creates specific storage objects and the VMware administrative team connects to and uses these objects.

All administrative teams within a virtual data center will benefit from using our VMware integration to run their business more simply and with a higher degree of efficiency, which is in line with the NetApp motto of "go further, faster."

NETAPP VCENTER PLUG-INS

The NetApp vCenter plug-ins, the Virtual Storage Console (VSC), and the Rapid Cloning Utility (RCU) have been combined into one NetApp plug-in framework with the release of VSC version 2.0. Additionally, VSC 2.0 now includes access to all of the capabilities of the NetApp SnapManager for Virtual Infrastructure (SMVI) product directly in the vSphere client interface.

The VSC nondisruptively sets storage-related configurations to their recommended values on ESX/ESXi hosts. In addition, VSC 2.0 provides automated provisioning of storage resource pools as datastores in a dynamic means by the VMware administrators. This provisioning model configures all storage access to follow NetApp recommended best practices in terms of availability, access control, and storage path management.

4.2 STORAGE ARCHITECTURE CONCEPTS

Prepare the following information before you configure your storage array to run a virtual infrastructure:

- Separate the networks for storage array management and storage I/O. This concept applies to all storage protocols, but is very pertinent to Ethernet-based deployments (NFS, iSCSI, FCoE). The separation can be physical (subnets) or logical (VLANs), but it must exist.
- If leveraging an IP-based storage protocol I/O (NFS or iSCSI), you might need more than a single IP address for the storage target. This determination is based on the capabilities of your networking hardware.
- With IP-based storage protocols (NFS and iSCSI), you channel multiple Ethernet ports together. NetApp refers to this function as a VIF. NetApp recommends creating LACP VIFs over multimode VIFs whenever possible.

4.3 NETAPP STORAGE CONSTRUCTS

A byproduct of any consolidation effort is the increased risk if the consolidation platform fails. As physical servers are converted to VMs and multiple VMs are consolidated onto a single physical platform, the impact of a failure to the single platform could be catastrophic. Fortunately, VMware provides multiple technologies that enhance availability of a virtual data center. These technologies include increased VM availability and load balancing with VMware HA and DRS clustering, zero-loss application availability with fault tolerance, and the ability to nondisruptively migrate running VMs and their datasets between physical ESX servers with vMotion and storage vMotion, respectively.

When focusing on storage availability, many levels of redundancy are available for deployments, including purchasing physical servers with multiple storage interconnects or HBAs, deploying redundant storage networking and network paths, and leveraging storage arrays with redundant controllers. A deployed storage design that meets all of these criteria can eliminate all single points of failure.
DATA PROTECTION AND RAID-DP

The reality is that data protection requirements in a virtual infrastructure are greater than those in a traditional physical server infrastructure. Data protection is a paramount feature of shared storage devices. NetApp RAID-DP® is an advanced RAID technology that is provided as the default RAID level on all FAS systems. RAID-DP protects against the simultaneous loss of two drives in a single RAID group. It is very economical to deploy; the overhead with default RAID groups is a mere 12.5%. This level of resiliency and storage efficiency makes data residing on RAID-DP safer than data stored on RAID 5 and more cost effective than RAID 10. NetApp recommends using RAID-DP on all RAID groups that store VMware data.

Figure 46) NetApp RAID-DP.

AGGREGATES

An aggregate is the NetApp virtualization layer, which abstracts physical disks from logical datasets that are referred to as flexible volumes. Aggregates are the means by which the total IOPS available to all of the physical disks are pooled as a resource. This design is well suited to meet the needs of an unpredictable and mixed workload.

NetApp controllers store their files required to run the array on a root aggregate. Whenever possible, NetApp recommends using a dedicated two-disk aggregate. By default, the root aggregate is composed of three disks due to the overhead of RAID-DP. To reduce the disk total from three to two, you must modify the RAID type from RAID-DP to RAID 4.

Note: This recommendation is very difficult to implement when you have a small number of disk drives. In this scenario, deploying with a dedicated root aggregate is not recommended.

The remaining storage should be placed into a small number of large aggregates. The overall disk I/O from VMware environments is traditionally random by nature, so this storage design gives an optimal performance because a large number of physical spindles are available to service I/O requests. On smaller FAS arrays, having more than a single aggregate might not be practical because of the restricted number of disk drives on the system. In this case, it is acceptable to have only a single aggregate.

FLEXIBLE VOLUMES

Flexible volumes contain either LUNs or virtual disk files that are accessed by VMware ESX servers. NetApp recommends a one-to-one relationship between VMware datastores and flexible volumes when deploying virtual servers. For virtual desktops, NetApp recommends a one-to-one relationship between VMware desktop pools and flexible volumes.

This design offers an easy means to understand the VMware data layout when viewing the storage configuration from the FAS array. This mapping model also makes it easy to implement Snapshot backups and SnapMirror replication policies at the datastore level, because NetApp implements these storage-side features at the flexible volume level.
LUNS

LUNs are units of SCSI addressed storage (FC, iSCSI, and FCoE) that, when connected to an ESX/ESXi cluster, are used as a shared VMFS datastore or raw device mapping (RDM). For more information, refer to the iSCSI or Fibre Channel SAN configuration guides.

STORAGE NAMING CONVENTIONS

NetApp storage systems allow human or canonical naming conventions. In a well-planned virtual infrastructure implementation, a descriptive naming convention aids in the identification and mapping through the multiple layers of virtualization from storage to the VMs. A simple and efficient naming convention also facilitates the configuration of replication and disaster recovery processes.

NetApp recommends the following naming guidelines:

- **Name of aggregate.** Can be any name that the storage administrator selects.
- **Name of FlexVol volume.** Should match the name of the datastore.
- **LUN name for VMFS.** Should match the name of the datastore.
- **LUN name for RDMs.** Should include both the host name and the volume label or name.

4.4 NETAPP ARRAY CONFIGURATION

This section covers the steps required to configure and provision a NetApp storage array into physical resource pools.

NETAPP SYSTEM MANAGER

NetApp provides the NetApp System Manager (NSM) as a convenient means to deploy a new storage array or manage a moderate number of storage arrays. Additional methods are available to manage storage arrays powered by Data ONTAP. These include legacy array-based methods such as FilerView and the command line interface (CLI) all the way up to global monitoring and management using Operations Manager.

In this document, we use the NSM exclusively for array-based configuration by the storage administrative team. The traditional configuration steps from previous versions of this document are included in TR-3880: CLI Configuration Processes for NetApp and VMware vSphere Storage Arrays Running Data ONTAP and ESX/ESXi Server.

DISCOVERING ARRAYS POWERED BY DATA ONTAP

To discover arrays powered by Data ONTAP, start by downloading and installing the NSM from the NetApp Support (formerly NOW®) site onto a server or VM based on Microsoft Windows. Rack and cable your NetApp array. You are required to connect at least one Ethernet port to complete a network-based setup that requires the assignment of a temporary IP address using Dynamic Host Configuration Protocol (DHCP). Alternatively, you can connect a serial cable to the array and complete the command line setup wizard that launches when the power is turned on.

In either scenario, you can launch the NSM and allow it to autodiscover your storage arrays by entering either the IP address of the array or the IP subnet on which the array resides. For more information on setting up a new array using the NSM, refer to the NetApp System Manager Quick Start Guide.
CONFIGURING STORAGE NETWORK INTERFACES

If you plan to deploy an FC or FCoE configuration, the only configuration requirement on the storage array is to enable the FC storage protocol. The RCU handles all LUN creation, masking, and other options.

If you plan to deploy with IP-based storage access, NFS, or iSCSI, then you must configure multiple Ethernet links to operate together as an EtherChannel. The determining factor of how your network ports are configured is based on the capabilities of your network switches. These capabilities and the process for completing the network port configuration are covered in section 3, "Storage Network Design and Setup."
MONITORING STORAGE USE WITH NETAPP SYSTEM MANAGER

NetApp System Manager can monitor, manage, and generate reports on current generation NetApp FAS systems in small to medium-size organizations.

When using storage savings technologies, such as thin provisioning and deduplication, it is very important to monitor the free space available in storage aggregates. Proper notification of the available free space means that additional storage can be made available before the aggregate becomes completely full.

NetApp recommends setting up e-mail and pager notifications to the appropriate administrators and Simple Network Management Protocol (SNMP) monitoring. These can both be configured in the NSM.

Figure 49) Setting up monitoring in the NetApp System Manager.

MONITORING STORAGE USE WITH NETAPP OPERATIONS MANAGER

NetApp Operations Manager monitors, manages, and generates reports on all of the NetApp FAS systems in medium to large-size organizations. When using NetApp thin provisioning, NetApp recommends deploying Operations Manager and setting up e-mail and pager notifications to the appropriate administrators. With thin-provisioned storage, it is very important to monitor the free space available in storage aggregates. Proper notification of the available free space means that additional storage can be made available before the aggregate becomes completely full. For more information about setting up notifications, refer to the DataFabric Manager Server: Operations Manager Administration Guide.

57 NetApp Storage Best Practices for VMware vSphere
Firewalls and TCP/IP Ports Required by VSC

The Virtual Storage Console uses standard protocols to communicate between the vSphere client, vCenter Server, VSC server, and NetApp storage controllers. However, some of the communication uses less common ports. VSC requires the ports in Table 6 to be open between the client, vCenter Server, and VSC server.

Table 6) TCP/IP ports used by VSC.

<table>
<thead>
<tr>
<th>Port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>VMware vCenter Server and the NetApp storage systems listen for standard, unencrypted communication using standard HTTP on this port.</td>
</tr>
<tr>
<td>443</td>
<td>VMware vCenter Server and the NetApp storage systems listen for secure communications using secure HTTP (SSL) on this port.</td>
</tr>
<tr>
<td>8043</td>
<td>Backup and recovery plug-in listens for secure communication on this port. The backup and recovery restore agent and CLI also make use of this port.</td>
</tr>
<tr>
<td>8143</td>
<td>The VSC plug-in listens for secure communication on this port.</td>
</tr>
</tbody>
</table>

4.5 CREATING A SERVICE ACCOUNT FOR THE CORE FEATURE OF THE VIRTUAL STORAGE CONSOLE 2.0

Although you can use the NetApp root user account as the VSC service account, it is typically not a recommended practice. This section covers how to create a user account within Data ONTAP for use as the service account within the VSC. This account is only granted the rights required to enable the functionality of the VSC 2.0 core features using NetApp role-based access controls (RBACs) on the storage array.

Note: This section only describes the RBAC rights necessary to enable the VSC core features in the VSC 2.0 framework.

ARRAY-SIDE CONFIGURATION

The first part of enabling RBAC is to create a new user, group, and role. The group contains the user and has the role assigned to it. To complete this process, you must complete the following steps using the Data ONTAP CLI (SSH, console connection, or telnet).

Note: Copying and pasting commands from this document might result in incorrectly transferred characters caused by end-of-line breaks or carriage returns. These types of errors cause the commands to fail. NetApp recommends copying and pasting the given commands into a text editor so the characters can be verified and corrected before being pasted into the NetApp CLI console.

STEP 1: CREATE A ROLE DEFINING THE RIGHTS REQUIRED FOR VSC CORE FEATURES

1. Create a name for this role.
2. Enter the following command on each storage controller.

```bash
```
STEP 2: CREATE A USER GROUP AND ASSIGN THE ROLE TO THE GROUP

1. Create a name for this group and reference the role name created in the previous step.
2. Enter the following command on each storage controller.

   ```bash
   useradmin group add "group_name" -r "role_name"
   ```

STEP 3: CREATE A USER ACCOUNT IN THE GROUP THAT WILL BE USED BY THE VSC

1. Create a name and password for this user account and reference the group name created in the previous step.
2. Enter the following command on each storage controller.

   ```bash
   useradmin user add "user_name" -g "group_name"
   ```

Note: You will be prompted to create the account password.
STEP 4: VERIFY YOUR WORK

1. Reference the user account created in the previous step.
2. Enter the following command on each storage controller.

   ```bash
   useradmin user list "user_name"
   ```

 The user and group information is displayed and should match the entries in the previous three steps.

4.6 SETTING STORAGE MANAGEMENT OPTIONS FOR THE PROVISIONING AND CLONING FEATURE OF VSC 2.0

The ability to provision storage resources to the VI administrative team can enable a very dynamic infrastructure, which greatly simplifies storage operations and accelerates the virtualization of the data center. This new model doesn’t have to be an all-or-nothing enablement because the functionality of the RCU can be restricted to one of four roles.
Today, these roles are global to the functionality available to all administrators in vCenter. A future update will enable these roles to be assigned to individual vCenter users or groups.

THE AVAILABLE ROLES

The provisioning and cloning feature of the VSC 2.0 enables the storage administrator to delegate capabilities to the virtual administrator by creating one of the four roles listed in Figure 54. Each role builds on the functionality available to lower role(s). The functionality enabled in the VSC increases as more RBAC rights are enabled for the virtual administrator.

Figure 54) The four provisioning and cloning roles available to the VSC.

| Destroy Datastores: Disconnects and deletes |
| Modify Datastores: Resize and dedupe |
| Create Datastores: Provision SAN and NAS |
| Create Clones: Pre-deduplicated VMs |

These roles are enabled by creating a service account on the storage array that is entered as the service account in the provisioning and cloning interface. This account can be modified at any time on the storage array, and these changes will become apparent in vCenter. This enables the storage administrative team to have root control of the array while enabling the VMware team to manage its storage resource pools.

Refer to section 5.3 for directions on how to enter this account in the VSC.

To create this account, complete the following steps.

STEP 1: CREATE THE REQUIRED PROVISIONING AND CLONING ROLE

This section covers the role required by the VSC for basic provisioning and cloning functionality. This role is created on the array and is required for higher level functionality by the VSC. Enter the following command on each storage controller. For examples on how to create roles, refer to section 4.5.

```
```

STEP 2: ADD ADDITIONAL OPTIONAL ROLES

This section covers how to create three additional roles on the array and how to assign the provisioning and cloning user account used by the VSC to the desired role. Enter the following command on each storage controller. For examples on how to create roles, refer to section 4.5.

```
useradmin role add create_datastores -a api-volume-create,api-volume-set-option,api-volume-autosize-set,api-sis-enable,api-sis-start,api-snapshot-
```
STEP 3: CREATE A USER GROUP AND ASSIGN PROVISIONING AND CLONING ROLES
1. Create a name for this group and reference the role name created in the previous step.
2. Enter the following command on each storage controller.

```
useradmin group add "group_name" -r "role1_name" "role2_name"
```

Remember to add the required role of `create_clones` and any optional roles. For examples on how to create roles, refer to section 4.5.

STEP 4: CREATE A USER ACCOUNT IN THE GROUP FOR THE VSC
1. Create a name and password for this user account and reference the group name created in the previous step.
2. Enter the following command on each storage controller. For examples on how to create a user account, refer to section 4.5.

```
useradmin user add "user_name" -g "group_name"
```

Note: You will be prompted to create the account password.

STEP 5: VERIFY YOUR WORK
1. Reference the user account created in the previous step.
2. Enter the following command on each storage controller.

```
useradmin user list "user_name"
```

The user and group information is displayed and should match the entries in the previous four steps.

Use this restricted service account as the account entered when adding storage controllers in the provisioning and cloning area of the VSC 2.0.
5 VSPHERE DYNAMIC STORAGE PROVISIONING AND MANAGEMENT

This section applies to:

- Storage administrators
- VI administrators
- Network administrators

5.1 STORAGE PROVISIONING AND MANAGEMENT BASED ON VCENTER

As discussed previously (refer to Figure 45), with the release of vSphere, NetApp introduced a new model of storage provisioning and management that allows the VI administrative team to directly deploy and manipulate datastores and VMs from raw storage pools provided by the NetApp administrator. Therefore, this functionality is provided by the provisioning and cloning feature of the Virtual Storage Console 2.0 vSphere plug-in.

INTRODUCING THE NETAPP VIRTUAL STORAGE CONSOLE 2.0 VCENTER PLUG-IN

The Virtual Storage Console (VSC) 2.0 is a free product available to NetApp customers. Once installed, the VSC is accessed using the NetApp icon on the vSphere client home screen. Each of the capabilities in the VSC plug-in framework is presented as follows:

- **Virtual Storage Console.** The core features of the VSC prior to version 2.0 are available in this console. These features are free to NetApp customers.

- **Provisioning and cloning.** This feature provides the capabilities that were previously available in the separate plug-in called the NetApp RCU. Features such as provisioning datastores and managing deduplication settings, as well as others, are available free within the tool. The rapid cloning capabilities provided by the provisioning and cloning feature require a NetApp FlexClone license on the storage array where the clones are being created.

- **Backup and recovery.** The capabilities of the NetApp SMVI in the VSC 2.0 plug-in framework are available in this feature. A VMware supported storage protocol, an SMVI license, and a SnapRestore® license are required for this feature. A SnapMirror license is required for storage-based replication, and FlexClone is required for NFS deployments.
The core feature of the VSC provides optimal availability and performance with ESX/ESXi hosts. The VSC has the following core abilities:

- Identify and configure optimal I/O settings for FC, FCoE, iSCSI, and NFS in ESX/ESXi hosts.
- Identify and configure optimal path selection policies for existing FC, FCoE, and iSCSI datastores.
- Identify VAAI-capable storage arrays and determine if those arrays are enabled for VAAI.
- Identify which ESX/ESXi hosts are connected to a particular storage array.
- Monitor and report storage use at levels from the datastore to the physical disks.
- Provide a central interface to collect data from the storage controller, network switches, and ESX/ESXi hosts to aid in the resolution of I/O-related case issues.

The provisioning and cloning capability of the VSC provides a means to optimally provision and manage NetApp SAN and NAS datastores along with a means to provision zero-cost VMs directly from within vCenter. The following provisioning and cloning capabilities are available in VSC 2.0:

- Delegate authority from the storage administrator to the virtual administrator for provisioning and cloning functions.
- Provision FC, FCoE, iSCSI, and NFS datastores.
- Automate assignment of multipathing policies to datastores with the VMware pluggable storage architecture for LUNs and ALUA-enabled LUNs and distribute NFS path connections based on a path round robin policy.
- Implement automated storage access control security when datastores are provisioned. Access control is in the form of LUN masking and NFS exports.
- Dynamically resize FC, FCoE, iSCSI, and NFS datastores on the fly.
- Provide a central interface to collect data from the storage controller, network switches, and ESX/ESXi hosts to aid in the resolution of I/O-related case issues.
5.2 INSTALLING THE VIRTUAL STORAGE CONSOLE 2.0

The VSC provides full support for hosts running ESX/ESXi 4.0 and later and provides limited reporting functionality with hosts running ESX/ESXi 3.5 and later. Before downloading and installing the VSC, make sure that your deployment has the required components:

- A vCenter Server version 4.0 or later. The VSC can be installed on the vCenter Server or on another server or VM.
- If installing on another server or VM, this system should run 32- or 64-bit Windows Server® 2008, 2003 SP1, and later, or a 32-bit version of XP Professional SP2 and later.
- A storage array is required to run Data ONTAP 7.3.1.1 or later.

For a list of supported storage adapters and firmware, refer to the NetApp Interoperability Matrix.

INSTALLING THE VSC 2.0

Complete the following steps to install the VSC 2.0:

1. Download the installation program to the Windows Server.
2. Run the installation wizard.
3. Follow the onscreen instructions.

 Note: During the installation process, a prompt displays to select the features of the VSC 2.0 that will be enabled in the environment. The core VSC must be selected. The provisioning and cloning and backup and recovery features are the former RCU and the SMVI interfaces, and certain subfeatures might require licensing, as described previously. At a minimum, NetApp recommends the installation of the provisioning and cloning capabilities because the procedures in this document are dependent on using these interfaces.

4. Register the VSC as a plug-in in the vCenter Server in the window that opens when the process is complete.

 Note: This final step requires a user with vCenter administrator credentials to complete the registration process.

Figure 56) Selecting the VSC 2.0 features to be enabled.
5.3 ADDING STORAGE CONTROLLERS TO THE VIRTUAL STORAGE CONSOLE

Adding the storage controllers that host the virtual infrastructure to the VSC is fairly simple.

1. Connect to vCenter by using the vSphere client.
2. Double-click the NetApp icon on the home screen.
3. Select the Virtual Storage Console tab on the left.

After these steps are completed, the VSC launches and automatically identifies all storage controllers powered by Data ONTAP with the storage connected to the ESX/ESXi hosts in the environment. As an
alternative to running discovery for the entire environment, you can select an ESX/ESXi host or cluster in
the vSphere client and then select the NetApp tab in the left panel. The VSC then begins discovery of all
storage controllers with storage connected to the host or cluster that was selected.

The Controller Credentials wizard starts, allowing you to enter the user or service account assigned for
VSC management on the storage controller. This account can be the root account or one created
specifically for the VSC core feature, as described previously.

Figure 59) Adding storage controller access in the VSC.

5.4 OPTIMAL STORAGE SETTINGS FOR ESX/ESXI HOSTS

The VSC enables the automated configuration of storage-related settings for all ESX/ESXi 4.x hosts
connected to NetApp storage controllers. VMware administrators can right-click individual or multiple
ESX/ESXi hosts and set recommended values for these hosts. This functionality sets values for HBAs
and CNAs, sets appropriate paths and path selection plug-ins, and provides appropriate settings for
software-based I/O (NFS and iSCSI).
5.5 ADDING STORAGE CONTROLLERS FOR PROVISIONING AND CLONING

The provisioning and cloning feature of the VSC 2.0 currently requires reauthentication of storage arrays by specifying the credentials necessary for communication. To do this using the vSphere client, complete the following steps:

1. Connect to vCenter.
2. Select the NetApp icon on the home screen.
3. Click the Provisioning and Cloning tab on the left side.
4. Click the Add button to begin the Controller Configuration wizard.
5. Select the Storage Controllers tab.

6. Click Add. This process allows you to manually add the storage controllers that you would like to use to deploy storage and clone VMs within vCenter.

7. Enter the user or service account assigned on the storage controller being added. This account can be the root account or one created earlier specifically for the provisioning and cloning feature.
5.6 ASSIGNING STORAGE RESOURCES FOR PROVISIONING AND CLONING

After the RCU is installed, the storage administrator can assign storage resources for use by the virtual infrastructure. These resources include network interfaces, FlexVol volumes (for SAN use), and aggregates (for NAS use). To assign these resources:

1. Open the Provisioning and Cloning tab in the VSC.
2. Select a controller.
3. Click the Resources button.
4. Assign resources for use by the virtual infrastructure.

As shown in Figure 63, the storage administrator can lock or restrict the ability to assign resources by selecting the Prevent further changes box and by entering a user name and password. The account used to lock these settings is created the first time this option is selected and stored securely inside the VSC.
Figure 63) Assigning storage resources in the VSC with the option to restrict these settings to the storage administration team.

5.7 END-TO-END PROVISIONING OF DATASTORES IN VCENTER

After arrays and storage resources have been assigned for provisioning and cloning use in the VSC, VMware administrators can provision datastores from within vCenter.

Complete the following steps to start the provisioning process:
1. Select and right-click a data center, a cluster, or an ESX/ESXi host.
2. Select the NetApp menu option.
3. Click Provisioning and Cloning.
4. Click Provision datastore.
This process launches the NetApp Datastore Provisioning wizard, which allows you to select the following:

- Storage controller
- Type of datastore (VMFS or NFS)
- Datastore details, including storage protocol and block size (if deploying a VMFS datastore)
- Whether the LUN should be thin provisioned

The provisioning process connects the datastore to all nodes within the selected group. For iSCSI, FC, and FCoE datastores, the VSC handles storage access control by:

- Creating initiator groups
- Enabling ALUA
- Applying LUN masking
- Applying path selection policies
- Formatting the LUN with VMFS

For NFS datastores, the VSC handles storage access control by managing access rights in the exports file, and it balances the load across all available interfaces.

Note: Remember, if you plan to enable data deduplication, then thin-provisioned LUNs are required to return storage to the free pool on the storage controller.

Figure 65 shows the provisioning of an FC datastore, named TR3749, on a thin-provisioned LUN that resides in an allocated FlexVol volume.
The provisioning process of NFS datastores is very similar to that of VMFS. One additional option is available to NFS datastores: They can be configured to autogrow based on datastore capacity. Figure 66 shows an example of provisioning an NFS datastore that is configured as thin provisioned and set to autogrow.
Figure 66) Provisioning a new NFS datastore with the NetApp Datastore Provisioning wizard.
5.8 CHOOSING A VIRTUAL MACHINE DATA LAYOUT

Before creating any storage objects, which is described in a later section, you must determine the data layout required for your VMs. The following section describes common data layout scenarios. The one you implement depends on whether or not you want to eliminate the capacity required by transient data, which could be captured in Snapshot copies or replicated over the WAN.

DEFAULT DATA LAYOUT

When a VM is provisioned, the VMware administrator must select a datastore in which to store the files that compose the VM. The directory that is created is referred to as the VM home directory. By default, all of the files for a single VM reside in the VM home directory. The VM home directory includes, but is not limited to, the configuration file for the VM, the virtual disk and virtual disk descriptor files, the VMkernel swapfile, Snapshot files, nonvolatile RAM (NVRAM), and so on.

From a simplicity standpoint, this design works well in situations in which a VM home directory is a virtual machine. Figure 67 shows a high-level conceptual view of this layout.

Figure 67) VMware default virtual machine and vSwap layout.

VIRTUAL MACHINE LAYOUT WITH NETAPP SNAP TECHNOLOGIES

This section reviews a data layout design that is recommended when integrating VMware with NetApp technologies such as SnapManager, Snapshot backups, disk-to-disk replication using SnapMirror and/or SnapVault. In these use case scenarios, NetApp recommends separating transient and temporary data from the production data by implementing an architecture that separates these two data types into multiple datastores.

Note: This design is not NetApp specific, but instead is an optimal consideration when deploying VMware on any storage array providing Snapshot backup or disk-based replication.

These types of technologies manage the files that make up a VM, not the content inside of these files, and therefore consume a substantial amount of additional disk and/or bandwidth if the temporary data and transient data are not separated from the production data.
RECOMMENDED LAYOUT: IMPLEMENT A CENTRAL VMKERNEL SWAP DATASTORE

ESX servers create a VMkernel swap or vswap file for every running VM. The file sizes are considerable; by default, the vswap is equal to the amount of memory configured for each VM. Because this data is transient in nature and is not required in the case of recovering a VM either from a backup copy or by using Site Recovery Manager, NetApp recommends relocating the VMkernel swap file for every VM from the VM home directory to a datastore on a separate NetApp volume dedicated to storing VMkernel swap files. Figure 68 shows a high-level conceptual view of this layout.

Figure 68) Recommended virtual machine layout: a central vswap datastore for the entire cluster.

Creating a datastore to store the swap files is a prerequisite to making this change. Because the VMware swap file storage requirements are dynamic, NetApp recommends creating either a large thin-provisioned LUN or a FlexVol volume with the autogrow feature enabled. Thin-provisioned LUNs and autogrow FlexVol volumes provide a large management benefit when storing swap files. This design removes the need to micromanage the swap space or to reduce the usage rate of the storage. Consider the alternative of storing VMware swap files on traditional storage arrays. If you undersize the swap space, the VMs fail to start; conversely, if you oversize the swap space, you have provisioned but unused storage.

The datastore that stores the vswap file is a single datastore for an entire cluster. NetApp does not recommend implementing local datastores on each ESX/ESXi host to store vswap because this configuration has a negative impact on vMotion migration times.

Figure 69 depicts the simplicity in configuring a central datastore for VMkernel swap in vCenter Server.
Figure 69) Configuring a central location for VMkernel swap files.

OPTIONAL LAYOUT: LOCATE VM SWAP/PAGEFILE ON A SECOND DATASTORE

This design layout builds on the layout described in the previous section, Recommended Layout: Implement a Central VMkernel Swap Datastore. However, in this design, the swap or pagefile of the VM is relocated in an alternate datastore. This section covers the architecture and the pros and cons of this design.

Each VM creates a swap or pagefile that is typically 1.5 to 2 times the size of the amount of memory configured for each VM. Because this data is transient in nature, we can save a fair amount of storage and/or bandwidth capacity by removing this data from the datastore, which contains the production data. To accomplish this design, the swap or pagefile of the VM must be relocated to a second virtual disk stored in a separate datastore on a separate NetApp volume. Figure 70 shows a high-level conceptual view of this layout.
This design has both benefits and disadvantages, which should be understood before implementation. The benefit is that temporary and transient data is not contained in either a Snapshot backup or a replicated dataset, thus conserving some amount of storage.

The disadvantage is that this design affects customers who implement VMware vCenter Site Recovery Manager. The intent is to avoid replicating the pagefile datastore to the DR site. This design imposes some administrative overhead because an additional SRM setting must be applied to each VM. This setting specifies a preexisting pagefile VMDK at the DR site in the SRM recovery plan. For more information on the details of this design with SRM, refer to the appendix of TR-3671: VMware vCenter Site Recovery Manager in a NetApp Environment.

5.9 RESIZING DATASTORE CAPACITY IN VCENTER

By using VSC 2.0, the VMware administrator can dynamically resize datastores on the fly without disruption to the production environment. VSC supports the expansion of VMFS and NFS datastores and the reduction, or shrinking, of NFS datastores. To modify the size of a datastore:

1. Right-click a datastore object within vCenter.
4. Select Resize.
5. Enter the new datastore size.
6. Click OK.
Figure 71) Selecting a datastore to resize.

Figure 72) Entering the new size of a VMFS datastore.
5.10 MONITORING DATASTORE AND STORAGE ARRAY CAPACITY IN VCENTER

The VSC provides VMware administrators with a way to monitor storage resource usage as measured in a datastore through the various layers, including the physical disk layer. At a high level, the SAN and NAS reports appear very similar, but we should highlight a few differences and points of interest.

NFS STORAGE MONITORING

To view information about your datastores:

1. Click the NetApp tab in vCenter.
2. Select either the Storage Details-NAS or Storage Details-SAN link in the VSC tab.

When you select an individual datastore, additional details are displayed regarding the configuration of the datastore. The following sections describe a few key elements of NFS datastores.

Figure 73) Viewing the details of a datastore in the Storage Details page of the VSC.
CAPACITY BOX

The capacity box lists the usage of the datastore, FlexVol volumes, and aggregate or physical disks. With NFS, the datastore and FlexVol volumes always display the same capacity because they are the same objects. A key component to monitor is the capacity of the aggregate because it is composed of physical disk drives.

For VMFS datastores, the datastore and LUN always display the same capacity, because they are the same objects. The capacity of the FlexVol volume and the aggregate are two key components that should be monitored. The FlexVol volume contains the LUN. If the LUN is thin provisioned, configuring the FlexVol volume to autogrow is critical to store the total capacity of the LUN. If the LUN grows larger than the FlexVol volume, then the LUN will go offline until more capacity is provided in the FlexVol volume.

Plans should be in place for when an aggregate nears 85% of its capacity. Options for this scenario include:

- Adding more disk drives to the aggregate
- Migrating either VMs or datastores to another aggregate or array

NetApp provides NetApp DataMotion™ as a nondisruptive method to migrate entire datastores between arrays to the hosted VMs.

VOLUME BOX

The volume box includes some key details about the selected FlexVol volume. All of the available options are set automatically when the provisioning and cloning feature is used. The VSC addresses NFS datastores provisioned before the use of the VSC and updates any settings that do not match NetApp recommendations.

DEDUPLICATION BOX

Storage savings obtained by data deduplication are reported in the deduplication box. For NFS datastores, the space savings provided by dedupe are returned directly within the datastore for immediate use by the running VMs or for provisioning additional VMs. To select dedupe savings, complete the following steps:

1. Right-click a datastore.
3. Select Deduplication management.

Figure 74) Viewing the details of NetApp dedupe on a datastore.
Figure 75) Viewing the amount of space saved with NetApp dedupe on a datastore.
6 VIRTUAL MACHINE CONFIGURATION AND OPTIMAL SETTINGS

This section applies to:

- Storage administrators
- VI administrators
- Virtual machine configuration administrators

6.1 WINDOWS VM FILE SYSTEM PERFORMANCE

OPTIMIZING WINDOWS FILE SYSTEM FOR OPTIMAL I/O PERFORMANCE

If your VM is not acting as a file server, consider implementing the following change to your VMs, which disable the access time updates process in the Microsoft Windows NT® File System (NTFS). This change reduces the amount of IOPS occurring within the file system. To make this change, complete the following steps:

1. Log into a Windows VM.
2. Click Start > Run, and enter CMD.
3. Enter:
   ```bash
   fsutil behavior set disablelastaccess 1.
   ```

DISK DEFRAGMENTATION UTILITIES

VMs stored on NetApp storage arrays should not use disk defragmentation utilities because the WAFL file system is designed to optimally place and access data at a level below the guest operating system (GOS) file system. If a software vendor advises you to run disk defragmentation utilities inside of a VM, contact the NetApp Global Support Center before initiating this activity.

6.2 OPTIMUM VM AVAILABILITY

OPTIMIZING VM SCSI BUS

One of the components of the VSC is the GOS timeout scripts. These scripts are a collection of ISO images that can be mounted by a VM to configure its local SCSI to values that are optimal for running in a virtual infrastructure.

To install the GOS timeout scripts, complete the following steps:

1. Mount the ISO image provided by the VSC.
2. Select a VM from which to upgrade within vCenter Server.
3. Right-click the selected VM and select edit settings.
4. Select CDROM and the ISO radio button.
5. Select the appropriate ISO that matches the OS of the VM you are configuring.
6. Select OK.
7. Connect to the VM console.
8. Run the script for the OS of the VM.
9. Exit and unmount the ISO image.
10. Repeat steps 1 through 9, as necessary for each VM.

6.3 OPTIMAL STORAGE PERFORMANCE

ALIGNMENT OF VM PARTITIONS AND VMFS TO STORAGE ARRAYS

VMs store their data on virtual disks. Similar to physical disks, these virtual disks contain storage partitions and file systems, which are created by the guest operating system of the VM. To provide optimal disk I/O within the VM, you must align the partitions of the virtual disks to the block boundaries of VMFS and the block boundaries of the storage array. Failure to align all of these items results in a dramatic increase of I/O load on a storage array and negatively affects the performance of all VMs being served on the array.

NetApp, VMware, other storage vendors, and VMware partners recommend aligning the partitions of VMs and the partitions of VMFS datastores to the blocks of the underlying storage array. For more information about VMFS and GOS file system alignment, refer to the following documents from various vendors:

- Dell. Designing and Optimizing SAN Configurations
- EMC. Celerra IP Storage with VMware Virtual Infrastructure
- EMC. CLARiiON Integration with VMware ESX Server
- IBM. Storage Block Alignment with VMware Virtual Infrastructure
- Vizioncore. vOptimizer Pro FAQ
- VMware. Recommendations for Aligning VMFS Partitions

DATASTORE ALIGNMENT

NetApp systems automate the alignment of VMFS with NetApp iSCSI, FC, and FCoE LUNs. This task is automated during the LUN provisioning phase of creating a datastore when you select the LUN type “VMware” for the LUN. Customers deploying VMware over NFS do not need to align the datastore. With any type of datastore, VMFS or NFS, the virtual disks contained within should have the partitions aligned to the blocks of the storage array.

VIRTUAL MACHINE PARTITION ALIGNMENT

When aligning the partitions of virtual disks for use with NetApp FAS systems, the starting partition offset must be divisible by 4,096. For example, the starting partition offset for Microsoft Windows 2000, 2003, and XP operating systems is 32,256. This value does not align to a block size of 4,096.

Virtual machines running a clean installation of Microsoft Windows 2008, Windows 7, or Windows Vista® operating systems automatically have their starting partitions set to 1,048,576. By default, this value does not require any adjustments.

Note: If your Windows 2008 or Windows Vista VMs were created by upgrading an earlier version of Microsoft Windows to one of these versions, then it is highly probable that these images require partition alignment.
6.4 VM PARTITION ALIGNMENT

STORAGE ALIGNMENT IS CRITICAL

Aligning the file system within the VMs to the storage array is very important. This process should not be considered optional. Misalignment at a high level results in decreased usage.

Failure to align the file systems results in a significant increase in storage array I/O to meet the I/O requirements of the hosted VMs. Customers might notice this impact when:

- Running high-performance applications
- Achieving less than impressive storage savings with deduplication
- Perceiving a need to upgrade storage array hardware

The reason for these types of issues is misalignment results in every I/O operation executed within the VM to require multiple I/O operations on the storage array.

Simply put, you can save your company a significant amount of capital expenditures by optimizing the I/O of your VMs.

6.5 IDENTIFYING PARTITION ALIGNMENT

VERIFYING PARTITION ALIGNMENT WITH WINDOWS OPERATING SYSTEMS

To verify the starting partition offset for a VM based on Windows, complete the following steps:

1. Log in to the VM.
2. Run the system information utility (or msinfo32) to find the starting partition offset setting.
3. To run msinfo32, click Start > All Programs > Accessories > System Tools > System Information.

Figure 76) Using system information to identify the starting partition offset.
NETAPP MBRT OOLS: IDENTIFICATION OF PARTITION ALIGNMENT STATUS

NetApp provides a tool, MBRScan, that runs on an ESX host and can identify if partitions are aligned with Windows and Linux VMs running within VMFS and NFS datastores. MBRScan runs against the virtual disk files that compose a VM. Although this process only requires a few seconds per VM to identify and report on the status of the partition alignment, each VM must be powered off. For this reason, it might be easier to identify the file system alignment from within each VM, because this action is nondisruptive.

MBRScan is an integrated component of the VSC.

6.6 CORRECTIVE ACTIONS FOR VMS WITH MISALIGNED PARTITIONS

BEGIN BY CORRECTING THE VM TEMPLATES

After you identify that your VMs have misaligned partitions, NetApp recommends correcting the partitions in your templates as the first corrective action. This step makes sure that any newly created VM is properly aligned and does not add to the I/O load on the storage array.

CORRECT PARTITION MISALIGNMENT WITH NETAPP MBR TOOLS

As part of the VSC tools, NetApp provides a tool, MBRAAlign, that runs on an ESX host and can correct misaligned primary and secondary master boot record-based partitions. When using MBRAAlign, the VM that is undergoing the corrective action must be powered off.

MBRAAlign provides flexible repair options. For example, it can be used to migrate and align a virtual disk as well as change the format from a thin to thick vmdk. NetApp highly recommends creating a Snapshot copy before executing MBRAAlign. This Snapshot copy can be safely discarded after a VM has been corrected, powered on, and the results have been verified.

MBRAAlign can be obtained from the Tools Download link in the VSC. NetApp recommends contacting the NetApp Global Support Center for assistance with implementing the corrective actions.

Linux VMs that boot using the GRUB boot loader require the following steps after MBRAAlign has been run.

1. Connect a Linux CD or CDROM ISO image to the Linux VM.
2. Boot the VM.
3. Select to boot from the CD.
4. Execute GRUB setup to repair the boot loader, when appropriate.

CORRECTING PARTITION MISALIGNMENT WITH THIRD-PARTY TOOLS

There are many industry-leading third-party tools that can correct misaligned VMDKs. While NetApp does not support these tools specifically, NetApp does support the resulting VM, provided using the tool results in an intact, aligned VM. Many of these tools include features such as a graphical user interface, job scheduling and reporting, and minimal downtime. Some examples of these tools include:

- VMware vCenter Converter™ 5
- Quest (formerly Vizioncore) vOptimizer Pro
- Novell PlateSpin Migrate
- Paragon Alignment Tool 3.0
6.7 CREATE PROPERLY ALIGNED PARTITIONS FOR NEW VMS

CREATING A PROPERLY ALIGNED VMDK FOR A NEW VM WITH DISKPART

Virtual disks can be formatted with the correct offset at the time of creation by simply booting the VM before installing an operating system and manually setting the partition offset. For Windows guest operating systems, consider using the Windows Preinstall Environment boot CD or the alternative "live DVD" tools. To set up the starting offset, complete the following steps (refer to Figure 77).

1. Boot the VM with the Microsoft WinPE CD.
2. Select Start, select Run, and enter diskpart.
3. Enter select disk 0.
4. Enter create partition primary align=32.
5. Reboot the VM with the WinPE CD.
6. Install the operating system as normal.

Figure 77) Running diskpart to set a proper starting partition offset.

You can also create properly aligned VMDKs with fdisk from an ESX console session. Refer to TR-3880: CLI Configuration Processes for NetApp and VMware vSphere Storage Arrays Running Data ONTAP and ESX/ESXi Server for details.

6.8 ADDING STORAGE CAPACITY TO A VM

GROWING A VIRTUAL DISK (VMDK)

With ESX/ESXi 4, virtual disks can be extended while the VM is powered on and running. Growing the virtual disk is only half of the equation for increasing available storage; you still need to grow the file system after the VM boots. Root volumes such as C:\ in Windows and / in Linux cannot be grown dynamically or while the system is running. For these volumes, refer to section Growing Bootable Volumes Within a Guest Operating System. For all other volumes, you can use the native operating system tools to grow the volume. To grow a virtual disk, complete the following steps:

1. Open vCenter Server.
2. Select a VM.
3. Right-click the VM and select Properties.
4. Select a virtual disk and increase its size (refer to Figure 78).
5. Click OK.
6. Start the VM.

Figure 78) Increasing the size of a virtual disk.

For more information about extending a virtual disk, refer to the VMware ESX and ESXi Server Configuration Guide.

Figure 79) Deleting a VMDK from a VM.
GROWING A FILE SYSTEM WITHIN A GUEST OPERATING SYSTEM (NTFS OR EXT3)

When a virtual disk or RDM has been increased in size, you still need to grow the file system residing on it after booting the VM. This process can be done live while the system is running by using native or freely distributed tools.

1. Remotely connect to the VM.
2. Grow the file system.
 - For Windows VMs, you can use the diskpart utility to grow the file system. For more information, refer to support.microsoft.com/default.aspx?scid=kb;en-us;300415.
 - For Linux VMs, you can use ext2resize to grow the file system. For more information, refer to sourceforge.net/projects/ext2resize.

In VMs running Microsoft Windows, the NetApp SnapDrive disk management software can be used to expand the size of an RDM disk from within the VM.

GROWING BOOTABLE VOLUMES WITHIN A GUEST OPERATING SYSTEM

Depending on which guest operating system you are running, the root or system volume might support live expansion. As of the time this document was written, we have confirmed that Windows 2008 supports dynamic capacity expansion. Root volumes for all other GOSs such as C:\ in Windows VMs and / in Linux VMs cannot be grown on the fly or while the system is running.

These file systems can be expanded using a simple method that does not require the acquisition of any additional software (except for ext2resize). This process requires connecting the VMDK or LUN that has been resized to another VM of the same operating system type by using the processes defined in section 6.8. After the storage is connected, the hosting VM can run the utility to extend the file system. After the file system is extended, this VM is shut down, and the storage is disconnected. Connect the storage to the original VM. When you boot, you can verify that the boot partition now has a new size.
7 DISK-BASED SNAPSHOT BACKUPS FOR VMWARE

This section applies to:

- Storage administrators
- VI administrators

7.1 COMPLEMENTARY SNAPSHOT TECHNOLOGIES

VMware vSphere provides the ability to create Snapshot copies of VMs. Snapshot technologies allow the creation of point-in-time copies that provide the fastest means to recover a VM to a previous point in time. NetApp has been providing customers with the ability to create Snapshot copies of their data since 1992. Although the basic concept of a Snapshot copy is similar for both NetApp and VMware, you should be aware of the differences between the two and when you should use one rather than the other.

VMware Snapshot copies provide simple point-in-time versions of VMs, enabling a quick recovery. The benefit of VMware Snapshot copies is that they are easy to create and use, because they can be executed and scheduled from within vCenter Server. VMware does not recommend leveraging the Snapshot technology in ESX as a means to back up vSphere. For more information about native VMware Snapshot copies, including usage guidelines, refer to the vSphere Basic System Administration guide.

NetApp Snapshot technology can easily be integrated into VMware environments, where it provides crash-consistent versions of VMs for the purpose of full VM recovery, full VM cloning, or site replication and disaster recovery. This is the only Snapshot technology that does not have a negative impact on system performance.

VMware states that for optimum performance and scalability, hardware-based Snapshot technology is preferred over software-based solutions. The shortcoming of this solution is that it is not managed within vCenter Server, requiring external scripting and/or scheduling to manage the process. For more information, refer to the vSphere Basic System Administration guide and the VMware ESX and ESXi Server Configuration Guide.

7.2 NETAPP SNAPSHOT BACKUPS FOR VSPHERE

The ability to quickly back up tens of hundreds of virtual machines without affecting production operations can accelerate the adoption of VMware within an organization. NetApp offers a means to do this in the backup and recovery capability of the Virtual Storage Console 2.0. This feature was formerly provided in a separate interface and was called SnapManager for Virtual Infrastructure (SMVI). It builds on the NetApp SnapManager portfolio by providing array-based backups, which only consume block-level changes to each VM and can provide multiple recovery points throughout the day. The backups are an integrated component within the storage array; therefore, SMVI provides recovery times that are faster than those provided by any other means.
Figure 80) Scheduling a datastore backup with the backup and recovery capability of the VSC.

Figure 81) New backup job created with the backup and recovery capability of the VSC.

For information and best practices about NetApp Snapshot backups for vSphere, refer to TR-3737: SnapManager 2.0 for Virtual Infrastructure Best Practices.
8 VSPHERE 5 INTRODUCTION

With vSphere 5.0, VMware made some major changes to the components that make up the vSphere suite. Some of these changes affect best practices. Other changes affect what products and features are actually available in vSphere, with some components removed completely and new components or versions of components added.

8.1 VMWARE ESXI

One of the most significant changes in vSphere 5 is that the larger ESX hypervisor with the full service console based on Linux was discontinued in favor of the lighter weight ESXi product. Some of the main differences are as follows:

- Smaller footprint due to full service console reduced to lightweight Busybox implementation.
- Command line and SSH access disabled by default.
- Fewer commands in the command line interface.
- No service console network or port. Management is now exclusively through a VMkernel port.
- Support for network boot and stateless servers, in addition to previous methods of boot from disk, local RAID, or SAN.

Note that there is also a product called VMware vSphere Hypervisor (ESXi), which, although the same basic software as the ESXi used with vSphere, is a free product with license keys for essentially standalone use without any vCenter management, clustering, or other capabilities normally required for robust, enterprise-class operations. While you can use the free hypervisor with NetApp storage, integration with tools such as NetApp Virtual Storage Console requires vCenter Server.

While VMware discourages software that is accessed by logging into the ESXi shell and running commands from the internal command line, there is still support for adding partner and other third-party software components. These add-ons take the form of a vSphere installation bundle (VIB), VMware’s term and format for an ESXi software package for ESXi itself and any add-ons. NetApp provides a set of VIBs for value-added functionality.

8.2 VMWARE VCENTER SERVER

VMware vCenter Server is the server application hosting and running the management framework for vSphere. Another big difference in vSphere 5 is that vCenter Server is now available in two versions:

- A Windows application installed on a Microsoft Windows Server 2003 or 2008 system or VM
- vCenter Server Appliance (vCSA), a virtual appliance based on Linux distributed as a fully functional downloadable appliance that runs as a VM with minimal configuration to get started

NetApp supports the use of both implementations, and all functions of Virtual Storage Console work the same regardless of which vCenter implementation is deployed. However, since vCSA is a Linux appliance, NetApp tools such as the Virtual Storage Console must be installed in a separate VM or server running a supported version of Windows. In fact, for many larger installations it is considered a best practice to run third-party tools such as VSC on a separate VM regardless of which version of vCenter is used.
8.3 USER INTERFACES

Many user interfaces, environments, development tools, and languages are available to manage vSphere and NetApp storage (Table 7).

Table 7) User interfaces for managing vSphere and NetApp storage.

<table>
<thead>
<tr>
<th>UI/Tool</th>
<th>Type</th>
<th>Target</th>
<th>Recommended</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESXi shell</td>
<td>CLI</td>
<td>Single ESXi server</td>
<td>Tech support</td>
<td>Accessed using SSH or physical console. Disabled by default. Manages a single ESXi server only.</td>
</tr>
<tr>
<td>vSphere CLI (vCLI)</td>
<td>CLI</td>
<td>ESXi or vCenter</td>
<td>Advanced</td>
<td>Installed in Windows or Linux to remotely manage ESXi and vCenter.</td>
</tr>
<tr>
<td>vSphere Management Assistant (vMA)</td>
<td>CLI</td>
<td>ESXi or vCenter</td>
<td>Advanced</td>
<td>vSphere CLI preinstalled in a Linux VM downloaded as an appliance.</td>
</tr>
<tr>
<td>vSphere SDK</td>
<td>SDK</td>
<td>vCenter</td>
<td>Developer</td>
<td>Used with Perl and other languages to develop custom tools and scripts.</td>
</tr>
<tr>
<td>vSphere client</td>
<td>GUI</td>
<td>vCenter or ESXi</td>
<td>Preferred UI for all users</td>
<td>Installs on Windows workstations. Rich graphical user interface for managing hosts, clusters, VMs, networking, and datastores, as well as the user interface for many vSphere add-ons such as Site Recovery Manager.</td>
</tr>
<tr>
<td>vSphere Web client</td>
<td>GUI</td>
<td>vCenter</td>
<td></td>
<td>Manages VMs and monitoring. No management of hosts, clusters, networking, or storage.</td>
</tr>
<tr>
<td>FilerView</td>
<td>Web GUI</td>
<td>Single NetApp controller</td>
<td></td>
<td>Built into NetApp storage systems. Manages only that system.</td>
</tr>
<tr>
<td>NetApp System Manager</td>
<td>GUI</td>
<td>Multiple NetApp controllers</td>
<td>Use for functions outside scope of VSC</td>
<td>Installs on Windows workstations.</td>
</tr>
<tr>
<td>DataFabric® Manager/Operations Manager</td>
<td>GUI</td>
<td>Multiple NetApp controllers</td>
<td></td>
<td>Installs on Windows, Linux, or Solaris server and accessed using Web browser or NetApp Management Console, which is installed on a Windows workstation.</td>
</tr>
<tr>
<td>Virtual Storage Console (2.1.1 or higher)</td>
<td>Plug-in</td>
<td>vCenter, ESXi and NetApp controllers</td>
<td>All users</td>
<td>Integrated management and workflows for vSphere environments using NetApp storage. Workflows requiring actions on both sides are implemented using the vSphere and Manage ONTAP® SDKs, greatly simplifying administration and making sure of consistent configuration across hosts in clusters.</td>
</tr>
<tr>
<td>UI/Tool</td>
<td>Type</td>
<td>Target</td>
<td>Recommended</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>NetApp Manageability SDK</td>
<td>SDK</td>
<td>Multiple NetApp controllers</td>
<td>Developer</td>
<td>Formerly Manage ONTAP. Supports C and C++, Java, Perl, C#, VB.NET, and PowerShell.</td>
</tr>
</tbody>
</table>

While there are users who might prefer or have reasons for using other interfaces and tools, NetApp recommends, and this document focuses on, using the vSphere client with the NetApp Virtual Storage Console installed on the vCenter Server for all supported functionality.

Note that VSC 2.1.1 is the first release with vSphere 5 support.

8.4 HOST PROFILES

Host profiles are a feature designed for making sure of consistent configuration of ESX/ESXi servers and have been available with vSphere 4. They have been enhanced in vSphere 5 to make more details and parameters available in many sections. Host profiles have a similar goal as the best practice settings of VSC, and there is overlap between the two. To avoid conflicts where VSC sets a parameter one way, rendering the ESXi host noncompliant with its host profile, it is important that the reference host be configured with NetApp best practices using the VSC Monitoring and Host Configuration panel before creating the profile from the reference host.
9 VSPHERE 5 DATASTORE UPDATE

9.1 DATASTORE COMPARISON TABLES

The following tables are updated with information pertaining to vSphere 5, as well as updates to current versions of Data ONTAP.

Table 8) Datastore supported features.

<table>
<thead>
<tr>
<th>Capability/Feature</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>VMFS or RDM</td>
<td>VMFS or RDM</td>
<td>NetApp WAFL</td>
</tr>
<tr>
<td>Maximum number of</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>datastores or LUNs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum datastore size</td>
<td>64TB</td>
<td>64TB</td>
<td>100TB(^1)</td>
</tr>
<tr>
<td>Maximum LUN/NAS file system size:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual RDM</td>
<td>2TB minus 512 bytes</td>
<td>2TB minus 512 bytes</td>
<td>RDM not supported with NFS</td>
</tr>
<tr>
<td>Physical RDM</td>
<td>64TB</td>
<td>64TB</td>
<td>RDM not supported with NFS</td>
</tr>
<tr>
<td>VMFS3</td>
<td>2TB</td>
<td>2TB</td>
<td>N/A</td>
</tr>
<tr>
<td>LUN used with VMFS3</td>
<td>64TB</td>
<td>64TB</td>
<td>N/A</td>
</tr>
<tr>
<td>VMFS5(^2)</td>
<td>64TB</td>
<td>64TB</td>
<td>N/A</td>
</tr>
<tr>
<td>LUN used with VMFS5(^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum virtual disk size (VMDK)</td>
<td>2TB minus 512 bytes</td>
<td>2TB minus 512 bytes</td>
<td>2TB minus 512 bytes</td>
</tr>
<tr>
<td>Optimal queue depth per LUN/file system</td>
<td>64</td>
<td>64</td>
<td>N/A</td>
</tr>
<tr>
<td>Available link speeds</td>
<td>4Gb and 8Gb FC and 10 Gigabit Ethernet (10GbE)</td>
<td>1GbE and 10GbE</td>
<td>1GbE and 10GbE</td>
</tr>
</tbody>
</table>

\(^1\) 100TB requires Data ONTAP 8.0 or higher and 64-bit aggregates.

\(^2\) Datastore upgraded from VMFS3 to VMFS5 inherits original blocksize and datastore size.

Table 9) VMware supported storage-related functionality.

<table>
<thead>
<tr>
<th>Capability/Feature</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>vMotion</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Storage vMotion</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VMware HA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DRS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Capability/Feature</td>
<td>FC/FCoE</td>
<td>iSCSI</td>
<td>NFS</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Storage I/O control (SIOC)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Datastore clusters</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Storage DRS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VCB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MSCS within a VM</td>
<td>Yes, using RDM for shared LUNs</td>
<td>Initiator in GOS is supported by NetApp</td>
<td>Not supported</td>
</tr>
<tr>
<td>Fault tolerance</td>
<td>Yes with eager-zeroed thick VMDKs or virtual-mode¹ RDMs</td>
<td>Yes with eager-zeroed thick VMDKs or virtual-mode¹ RDMs</td>
<td>Yes with eager-zeroed thick VMDKs</td>
</tr>
<tr>
<td>Site Recovery Manager</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual disk formats:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Thin-provisioned</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes²</td>
</tr>
<tr>
<td>• Thick</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes³</td>
</tr>
<tr>
<td>• Eager-zero thick</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VMware native multipathing</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Boot from SAN⁴</td>
<td>Yes</td>
<td>Yes with HBAs</td>
<td>No</td>
</tr>
</tbody>
</table>

¹ NetApp SnapDrive for Windows software does not support virtual-mode RDM devices.
² Requires VAAI for NFS.
³ Autodeploy is supported for all protocols for vSphere 5/ESXi 5. Servers boot using TFTP and HTTP, but may use FC, FCoE, iSCSI, or NFS for datastores.

Table 10) NetApp supported storage management features.

<table>
<thead>
<tr>
<th>Capability/Feature</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data deduplication</td>
<td>Savings in the array</td>
<td>Savings in the array</td>
<td>Savings in the datastore</td>
</tr>
<tr>
<td>Thin provisioning</td>
<td>Datastore or RDM</td>
<td>Datastore or RDM</td>
<td>Datastore</td>
</tr>
<tr>
<td>Resize datastore</td>
<td>Grow only</td>
<td>Grow only</td>
<td>Grow, autogrow, and shrink</td>
</tr>
<tr>
<td>Thin provisioning</td>
<td>Datastore or RDM</td>
<td>Datastore or RDM</td>
<td>Datastore</td>
</tr>
<tr>
<td>SANscreen VM Insight</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SnapDrive (in guest)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ESX Host Utilities Virtual Storage Console (VSC 2.0)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VM backup and recovery using VSC 2.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Capability/Feature</td>
<td>FC/FCoE</td>
<td>iSCSI</td>
<td>NFS</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Provisioning and cloning using VSC 2.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Space reclamation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• In VMDK/guest FS</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>• In VMFS</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1 Requires SnapDrive 6.3 for Windows.

Table 11) Supported backup features.

<table>
<thead>
<tr>
<th>Capability/Feature</th>
<th>FC/FCoE</th>
<th>iSCSI</th>
<th>NFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshot backups</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Replicated backups support SRM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SnapMirror</td>
<td>Datastore or RDM</td>
<td>Datastore or RDM</td>
<td>Datastore or VM</td>
</tr>
<tr>
<td>SnapVault</td>
<td>Datastore or RDM</td>
<td>Datastore or RDM</td>
<td>Datastore or VM</td>
</tr>
<tr>
<td>VMDK image access</td>
<td>VCB</td>
<td>VCB</td>
<td>VCB, VIC File Explorer</td>
</tr>
<tr>
<td>VMDK file-level access</td>
<td>VCB, Windows only</td>
<td>VCB, Windows only</td>
<td>VCB and third-party apps</td>
</tr>
<tr>
<td>NDMP granularity</td>
<td>Datastore</td>
<td>Datastore</td>
<td>Datastore or VM</td>
</tr>
<tr>
<td>Snap Creator™ framework</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SnapProtect™</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

9.2 VMFS 5

One of the big new features of vSphere 5 is the new version of the vSphere Virtual Machine File System (VMFS) version 5. VMFS5 removes many of the limitations of previous versions of VMFS and takes even more advantage of advanced SCSI technologies such as VAAI. As listed in Table 8, VMFS5 supports LUN sizes up to 64TB, although NetApp storage systems currently support up to 16TB. Further, vSphere 5 supports physical-mode raw device map (RDM) LUNs given directly to VMs of up to 64TB. Virtual-mode RDMs are still limited to 2TB since virtual-mode RDMs allow for VMware snapshots that consist of delta VMDK files, which, like all VMDK files in VMFS5, are limited to 2TB.

Two key elements that allow larger LUNs in VMFS5 are the use of GUID partition tables (GPTs) and SCSI 16-byte command headers. GPTs replace master boot record (MBR) partition tables for systems that use disk devices 2TB or larger. MBR is limited to a 32-bit logical block address (LBA), which is also the LBA size in SCSI 10-byte command headers. \(2^{32} \times 512\) bytes per sector yields a maximum addressable range of one sector less than 2TB. With 64-bit LBA used with GPT and SCSI-16 commands as implemented with VMFS5, disk devices and partitions can be several orders of magnitude larger than with 32-bit LBA.

Note that there are a few limits that did not change with vSphere and ESXi 5. In particular, the maximum number of LUNs (256) and paths (1024) and maximum LUN ID (255) are the same as with previous versions.
VMFS5 is not backward compatible with versions of ESX/ESXi before vSphere 5; it requires ESXi 5 or higher. One feature this allows for is to use the improved hardware-assisted locking (sometimes referred to as atomic test and set, or ATS) exclusively for storage devices such as NetApp that support the SCSI ATS command. This completely eliminates one of the scalability and performance bottlenecks caused by SCSI reservations as used in earlier versions of VMFS and ESX prior to ESX 4.1 and storage platforms that lack support for the SCSI commands used by VAAI. Note that ATS-only is a feature of VMFS datastores that were created as VMFS5. VMFS3 upgraded to VMFS5 can still use SCSI reservations.

Another valuable feature of VMFS5 is better handling of what is referred to as all paths down (APD). APD is the error that was previously thrown when ESX could no longer get to a LUN using any known path. The original design only allowed for individual paths to fail. Loss of all paths to a LUN was considered catastrophic, and either ESX would hang all I/O to unaffected VMs, or, in extreme cases, ESX itself could crash with a purple screen error on the console.

What this design did not handle well is temporary LUNs such as clones or snapshots. A common example of temporary LUNs with NetApp technology is Snapshot copies of databases such as Exchange or SQL Server that were mounted for verification of the backup. After verification is complete, SnapDrive for Windows disconnects the LUN. Although this might appear to be a loss of all paths, it is intentional. There is a procedure for disconnecting a LUN without causing APD for ESX 4.1, but with ESXi 5 and VMFS5, APD is handled much more gracefully.

9.3 NFS CHANGES IN VSPHERE 5

MAXIMUM NUMBER OF NFS DATASTORES AND HEAP MEMORY

The main change in vSphere 5 for NFS datastores is that ESXi supports up to 256 datastores per server. In previous versions, it was necessary to increase the Net.TcpipHeapMax advanced parameter (buffer memory used by TCP/IP protocols, including NFS, iSCSI, management traffic, vMotion, and so on) when increasing the number of NFS datastores. While the NetApp best practice remains to set Net.TcpipHeapMax at the maximum value of 128MB, tests have shown ESXi 5 to be less sensitive to depletion of TCP/IP heap memory.

ADVANCED DATASTORE FEATURES

vSphere 5 also adds support for NFS datastores for SIOC, VAAI, and datastore clusters and SDRS covered later in this document.

USING MULTIPLE IP ADDRESSES WITH A SINGLE NFS DATASTORE

The best practice for most installations is to consistently mount NFS datastores using the same IP address and export path for all ESX servers that share the datastore. If two servers are given different parameters for host or export, they will see the NetApp volume as two different datastores (assigning different UUIDs). In some cases, it might be desirable to use two different IP addresses to access the same datastore. This might be to achieve utilization of multiple network connections or because two servers might be connected to storage using different networks. In order to make the ESX servers see these different paths as the same datastore, host entries must be created to resolve different IP addresses for the same NetApp storage system using one of the following methods:

- Host entries in /etc/hosts on each server that resolve the same host name to different IP addresses.
- DNS providing different IP addresses for the same host lookup depending on the server or subnet that requests the lookup.
- Round robin DNS providing different IP addresses to subsequent lookup requests. Note that using round robin DNS, the same server might be giving different IP addresses at different times, usually after a reboot.
As far as ESX is concerned this works fine. vCenter, however, looks deeper and inspects that actual underlying IP address. Prior to 5.0, vCenter would see the different IP addresses and have no way of knowing they resolve to the same storage system. vCenter renames the second discovered datastore, appending a number after the name. The result is that vMotion and DRS would fail, refusing to migrate VMs between servers. As of version 5.0, vCenter no longer renames datastores mounted using host names that resolve to different IPs, and vMotion and DRS now can migrate VMs as long as the different IP addresses truly resolve to the same storage.

However, it is still the case that the parameters passed to the ESX servers must match in order that the ESX servers perceive the NetApp volume to be the same datastore. Further, if a datastore is unmounted and remounted with different parameters on the same server, ESX will see it as a different datastore and break the association with any VMs on it. This means that changing the NFS host parameter in any of the following ways will require reregistering VMs:

- Changing from hostname, FQDN, or IP to one of the other two
- Changing IP addresses or using different IP addresses when using IP address as the parameter
- Changing the hostname when using hostname or FQDN
- Changing the domain when using FQDN

9.4 STORAGE DISTRIBUTED RESOURCE SCHEDULER (STORAGE DRS)

Storage DRS is a new feature that provides smart VM placement across storage by making load-balancing decisions based upon the current I/O latency and space usage and moving VMDKs nondisruptively between the datastores in the datastore cluster (POD).

Storage DRS will select the best datastore to place this virtual machine or virtual disks (VMDKs) in the selected datastore cluster.

DATASSTORE CLUSTER (PODS)

A datastore cluster is a collection of like datastores aggregated into a single unit of consumption from an administrator’s perspective. It enables smart and rapid placement of new virtual machines and virtual disk drives (VMDKs) and load balancing of existing workloads.

Figure 82) New datastore cluster.
At least one volume to be used in the datastore cluster must exist before creating the datastore cluster or the wizard will not move past the datastore selection window. Create datastores using the Provisioning and Cloning feature of Virtual Storage Console. After creating the datastore cluster, additional datastores can be added to the datastore cluster directly from the VSC provisioning wizard on the Datastore details page (see Figure 83).

Figure 83) Adding a new datastore to a datastore cluster using VSC.
Best Practices

Following are the key recommendations when configuring storage DRS and datastore cluster:

- Set SDRS to manual mode and to review the recommendations before accepting them.
- All datastores in the cluster should use the same type of storage (SAS, SATA, and so on) and have the same replication and protection settings.
- SDRS will move VMDKs between datastores, and any space savings from NetApp cloning or deduplication will be lost when the VMDK is moved. You can rerun deduplication to regain these savings.
- After SDRS moves VMDKs, it is recommended to recreate the Snapshot copies at the destination datastore.
- Do not use SDRS on thinly provisioned VMFS datastores due to the risk of reaching an out-of-space situation.
- Do not mix replicated and nonreplicated datastores in a datastore cluster.
- All datastores in an SDRS cluster must either be all VMFS or all NFS datastores.
- Datastores cannot be shared between different sites.
- All datastore hosts within the datastore cluster must be ESXi 5 hosts.

PLACEMENT RECOMMENDATIONS

Storage DRS provides initial placement and ongoing balancing recommendations assisting vSphere administrators in making placement decisions based on space and I/O capacity. During the provisioning of a virtual machine, a datastore cluster can be selected as the target destination for this virtual machine or virtual disk, after which a recommendation for initial placement is made based on space and I/O capacity.
An ongoing balancing algorithm issues migration recommendations when a datastore in a POD exceeds user-configurable space utilization or I/O latency thresholds. These thresholds are typically defined during the configuration of the PODs. Storage DRS utilizes vCenter Server's datastore utilization reporting mechanism to make recommendations whenever the configured utilized space threshold is exceeded. I/O load is evaluated by default every 8 hours, currently with a default latency threshold of 15ms. Only when this I/O latency threshold is exceeded will storage DRS calculate all possible moves to balance the load accordingly while considering the cost and the benefit of the migration. If the benefit doesn’t last for at least 24 hours, storage DRS will not make the recommendation.

AFFINITY RULES AND MAINTENANCE MODE

Storage DRS affinity rules enable controlling which virtual disks should or should not be placed on the same datastore within a datastore cluster (PODs). By default, a virtual machine’s virtual disks are kept together on the same datastore. Storage DRS offers three types of affinity rules:

- **VMDK affinity.** Virtual disks are kept together on the same datastore.
- **VMDK anti-affinity.** Virtual disks of a virtual machine with multiple virtual disks are placed on different datastores.
- **VM anti-affinity.** Two specified virtual machines, including associated disks, are placed on different datastores.
In addition, storage DRS offers datastore maintenance mode, which automatically evacuates all virtual machines and virtual disk drives from the selected datastore to the remaining datastores in the datastore cluster.

STORAGE DRS INTEROP CONSIDERATIONS WITH DATA ONTAP

Table 12 summarizes VMware storage DRS interoperability with Data ONTAP advanced features.

<table>
<thead>
<tr>
<th>NetApp Feature</th>
<th>SDRS Initial Placement</th>
<th>SDRS Migration Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshot</td>
<td>Supported</td>
<td>Use manual mode only and recreate Snapshot copies on the destination datastore.</td>
</tr>
<tr>
<td>Deduplication</td>
<td>Supported</td>
<td>Use manual mode only and rerun deduplication to regain storage savings.</td>
</tr>
<tr>
<td>Thin provisioning</td>
<td>Supported</td>
<td>Use manual mode only, and supported on VASA-enabled arrays only. It is highly recommended not to use storage DRS on thinly provisioned VMFS datastores.</td>
</tr>
<tr>
<td>SnapMirror</td>
<td>Supported</td>
<td>Use manual mode only, since storage vMotion can cause a temporary lapse in protection (break RPO) and increase the size of the next replication transfer.</td>
</tr>
</tbody>
</table>
The following elaborates on some of the above combinations.

NetApp Snapshot and SDRS

NetApp Snapshot protects data by locking the blocks owned by an object when the Snapshot copy was created. If the original object is deleted, the Snapshot copy still holds the blocks the object held at the time of the Snapshot copy creation. When SDRS moves a VM from one datastore to another, it is effectively a delete from the source datastore. If the reason for the SDRS migration was to free up space on the original datastore, the goal will not be achieved until all Snapshot copies containing the VM expire by schedule or are otherwise deleted.

Snapshot copies cannot be migrated with the VM. Migration of VMs can break the relationship between the VM, which is now on a new datastore, and its Snapshot copies, which are still on the original, depending on whether the backup management software is SDRS aware. The Snapshot copies are still a complete and valid backup of the VM; however, the backup software might not be aware that the VM was simply moved to another datastore. Over time with normal backup schedules, Snapshot copies on the new datastore will capture the migrated VM.

NetApp Deduplication and SDRS

If a VM to be migrated with SDRS has been deduplicated and is sharing many of its blocks with other VMs, and the goal of SDRS is to recover space on the original datastore, the only space that will be freed by the migration will be the unique blocks of that VM, which, depending on the VM, might be a small percentage.

As a VM is written to a new datastore during an SDRS migration, it is seen initially by the new datastore as new blocks. While block hashes are calculated on deduplication-enabled datastores as blocks are written, the blocks are not actually deduplicated until the next scheduled or manual deduplication run. As a result, the VM will initially consume 100% of its size.

NetApp Datastore Thin Provisioning and SDRS

With NFS datastores, when an object is deleted, all its blocks are freed and returned to the volume, if not thin provisioned, or to the containing aggregate if the volume is thin provisioned.

Thin-provisioned LUNs do not get blocks allocated until written to. When a file is deleted in a file system inside a LUN, including VMFS, blocks are not actually zeroed or freed in a meaningful way to the underlying storage. Therefore, once a block in a LUN is written, it stays owned by the LUN even if “freed” at a higher layer. If the goal of SDRS migration was to free space in the aggregate containing a thin-provisioned VMFS datastore, that goal might not be achieved.

9.5 vSphere Storage I/O Control

vSphere storage I/O (SIOC) control was initially introduced in vSphere 4.1 to provide I/O prioritization of virtual machine running on a cluster of VMware ESX servers that had access to a shared iSCSI and FC datastores. vSphere 5 extends storage I/O control to support for NFS and NAS–based shares on shared datastores.

SIOC prioritizes the VMs’ access to shared I/O resources based on disk shares assigned to them. During periods of I/O congestion, VMs are allowed to use only a fraction of the shared I/O resources in proportion to their relative priority, which is determined by the disk shares.
To use SIOC, enable it on the datastore and then apply the resource shares and limits to the VMs in that datastore.

Figure 87) Enabling SIOC on an NFS datastore in vSphere 5.0.

<table>
<thead>
<tr>
<th>Datastores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>datastore1 (2)</td>
</tr>
<tr>
<td>demo2</td>
</tr>
<tr>
<td>InfravMs</td>
</tr>
<tr>
<td>LinkedClone</td>
</tr>
<tr>
<td>NFSDS1</td>
</tr>
<tr>
<td>NFSDS2</td>
</tr>
<tr>
<td>NFSDS3</td>
</tr>
<tr>
<td>Software</td>
</tr>
<tr>
<td>TemplateDS</td>
</tr>
<tr>
<td>TestSCSI-DS1</td>
</tr>
<tr>
<td>TestNFS</td>
</tr>
</tbody>
</table>

The VM limits are applied by using the Resources tab in the VM Edit Settings dialog window. By default all VMs in the datastore are given equal resource shares and unlimited IOPS.

Figure 88) Enabling SIOC on a VM in vSphere 5.0.
Note:
- Storage DRS and storage I/O control are complementary solutions and may be used together.
- SIOC is enabled by default on the SDRS-enabled pods.
- Storage DRS works to avoid I/O bottlenecks.
- SIOC manages unavoidable I/O bottlenecks.

10 VSPHERE 5 STORAGE NETWORKING

10.1 VSPHERE STANDARD VSWITCHES
Most of the basic functions and configuration of a standard vSwitch have not changed substantially in vSphere 5. What has changed is that some configuration parameters that were previously command line only are now exposed in the GUI.

MTU/JUMBO FRAMES
The vSphere client now has a setting in the properties dialogs for vSwitches and VMkernel ports to set maximum transmission unit (MTU) to enable jumbo frames. In previous versions of ESX, this could only be set on the command line and in some versions could only be set during creation of the vSwitch.

Figure 89) MTU setting on a vSwitch.
FLOW CONTROL

Modern network equipment and protocols generally handle port congestion better than in the past. While NetApp had previously recommended flow control "send" on ESX hosts and NetApp storage controllers, the current recommendation, especially with 10 Gigabit Ethernet equipment, is to disable flow control on ESXi, NetApp FAS, and the switches in between.

With ESXi 5, flow control is not exposed in the vSphere client GUI. The ethtool command sets flow control on a per-interface basis. There are three options for flow control: "autoneg," "tx," and "rx." "tx" is equivalent to "send" on other devices. Note that with some NIC drivers, including some Intel drivers, autoneg must be disabled in the same command line for tx and rx to take effect.

```
~ # esxcfg-nics -l
Name    PCI           Driver      Description
vmnic0  0000:01:00.00 igb         Intel Corporation 82575EB Gigabit Network Connection
vmnic1  0000:01:00.01 igb         Intel Corporation 82575EB Gigabit Network Connection
vmnic2  0000:06:00.00 e1000e      Intel Corporation 82571EB Gigabit Ethernet Controller
vmnic3  0000:06:00.01 e1000e      Intel Corporation 82571EB Gigabit Ethernet Controller
vmnic4  0000:07:00.00 e1000e      Intel Corporation 82571EB Gigabit Ethernet Controller
vmnic5  0000:07:00.01 e1000e      Intel Corporation 82571EB Gigabit Ethernet Controller

~ # ethtool -a vmnic2
Pause parameters for vmnic2:
Autonegotiate: on
RX: on
TX: on
```
10.2 ENABLING MULTIPLE TCP SESSION SUPPORT FOR ISCSI

With vSphere 5, you have the option to enable the use of multiple TCP sessions with iSCSI. This feature enables round robin load balancing using VMware native multipathing and requires a VMkernel port to be defined for each physical adapter port assigned to iSCSI traffic.

It is required that VMkernel ports that will be used for iSCSI and physical vmnic adapter ports have a 1:1 relationship. There should be only one active vmnic per VMkernel port, and each vmnic should be dedicated to that VMkernel port only. This can be accomplished by creating each VMkernel port in a separate vSwitch along with the desired vmnic. If this option is chosen, each VMkernel IP address must be in a separate IP subnet. If using a single vSwitch configuration, the NIC teaming policies can be manually overridden to allow for a single active vmnic and zero standby vmnics per VMkernel port. Any nonactive vmnics should be configured as unused adapters for that VMkernel.

Note: Configuring iSCSI VMkernel ports as described in this section results in the individual iSCSI VMkernel ports being configured without NIC teaming and therefore no network layer redundancy. In this configuration, iSCSI redundancy is provided by the native multipathing layer in ESXi. In this way, iSCSI redundancy is provided in the same way as FC redundancy. Enabling multiple TCP session support for iSCSI on ESXi hosts that also connect with NFS is not supported and should not be done, because it might result in NFS mounts occurring over the iSCSI VMkernel ports, which have no network layer redundancy. NetApp recommends that hosts requiring the concurrent use of both iSCSI and NFS rely on the TCP layer of the network using NIC teaming for storage path redundancy, as described in the previous sections.

To create multiple iSCSI VMkernel ports to support multiple TCP sessions with iSCSI, do the following steps:

1. Open vCenter Server.
2. Select an ESXi host.
3. In the right pane, click the Configuration tab.
4. In the Hardware box, select Networking.
5. In the upper-right corner, click Add Networking to open the Add Network wizard.
6. Select the VMkernel radio button and click Next.
 Note: You will create a separate VMkernel port for every Ethernet link that you want to dedicate to iSCSI traffic. Note that VMkernels can be on different IP subnets.
7. Configure the VMkernel by providing the required network information. A default gateway is not required for the VMkernel IP storage network.
8. Configure each VMkernel to use a single active adapter that is not used by any other iSCSI VMkernel. Also, each VMkernel must not have any standby adapters (see Figure 91 and Figure 92). If using a single vSwitch, it is necessary to override the switch failover order for each VMkernel port used for iSCSI. There must be only one active vmnic, and all others should be assigned to unused adapters as shown in Figure 93.
9. The VMkernels created in the previous steps must be bound to the software iSCSI storage adapter. In the Hardware box for the selected ESXi server, select Storage Adapters.
10. Right-click the iSCSI Software Adapter and select properties.
The iSCSI Initiator Properties dialog box appears.

11. Click the Network Configuration tab.

12. In the top window, the VMkernel ports that are currently bound to the iSCSI software interface are listed (see Figure 94).

13. To bind a new VMkernel port, click the Add button. A list of eligible VMkernel ports is displayed. If no eligible ports are displayed, make sure that the VMkernel ports have a 1:1 mapping to active vmnics as described earlier.

14. Select the desired VMkernel port and click OK.

15. Click Close to close the dialog box.

16. At this point, the vSphere client will recommend rescanning the iSCSI adapters. After doing this, go back into the Network Configuration tab to verify that the new VMkernel ports are shown as active (see Figure 95).

Figure 91) iSCSI VMkernel 2: Note active adapter vmnic1.
Figure 92) iSCSI VMkernel 3: Note active adapter vmnic0.
Figure 93) Each VMkernel port should be configured with one active and zero standby vmnics.
Figure 94) One VMkernel port is bound to the iSCSI software adapter.

<table>
<thead>
<tr>
<th>Port Group</th>
<th>VMkernel Adapter</th>
<th>Port Group Policy</th>
<th>Path Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSwitch0</td>
<td>vmk2</td>
<td>Compliant</td>
<td>Last Active</td>
</tr>
</tbody>
</table>

Virtual Network Adapter
- VMkernel: vmk2
- Switch: vSwitch0
- Port Group: VMkernel 2
- Port Group Policy: Compliant
- IP Address: 192.168.2.141
- Subnet Mask: 255.255.255.0

Physical Network Adapter
- Name: vmnic1
- Device: Intel Corporation 82575EB Gigabit Network Connection
- Link Status: Connected
- Configured Speed: 1000 Mbps (Full Duplex)
Figure 95: Multiple VMkernel ports are bound and active.
11 SUMMARY

VMware vSphere offers customers several methods of providing storage to VMs. All of these storage methods give customers flexibility in their infrastructure design, which in turn provides cost savings, increased storage use, and enhanced data recovery.

This technical report is not intended to be a definitive implementation or solutions guide. Expertise might be required to solve user-specific deployment issues. Contact your local NetApp representative to make an appointment to speak with a NetApp VMware solutions expert.

Comments about this technical report are welcome. Feel free to contact the authors by sending an e-mail to xdf-vgibutmevmtr@netapp.com. Refer to TR-3749 v3.0 in the subject line of your e-mail.

12 DOCUMENT REFERENCES

MISCELLANEOUS REFERENCES

- Total Cost Comparison: IT Decision-Maker Perspectives on EMC, HP, and NetApp Storage Solutions in Enterprise Database Environments
- Wikipedia RAID Definitions and Explanations
 en.wikipedia.org/wiki/Redundant_array_of_independent_disks
- Microsoft: A Description of the Diskpart Command-Line Utility
 www.support.microsoft.com/default.aspx?scid=kb;en-us;300415
- GNU ext2resize
 www.sourceforge.net/projects/ext2resize
- IBM: Storage Block Alignment with VMware Virtual Infrastructure and IBM System Storage N series
 ftp://service.boulder.ibm.com/storage/isk/NS3593-0.pdf
- Using EMC Celerra IP Storage with VMware Infrastructure 3 over iSCSI and NFS
 www.vmware.com/files/pdf/VMware_VI3_and_EMC_Celerra_IP.pdf
- Dell/EMC SAN Configurations Part 2
- EMC CLARiiON Integration with VMware ESX Server
- Vizioncore: Quest vOptimizer Pro FAQ
- Cisco Nexus 1000V Series Switches Deployment Guide Version 2

NETAPP REFERENCES

- NetApp VM Insight with SANscreen
- TR-3348: Block Management with Data ONTAP 7G: FlexVol, FlexClone, and Space Guarantees
- TR-3737: SnapManager 2.0 for Virtual Infrastructure Best Practices
 media.netapp.com/documents/tr-3737.pdf
 media.netapp.com/documents/tr-3298.pdf
- TR-3671: VMware vCenter Site Recovery Manager in a NetApp Environment
 media.netapp.com/documents/tr-3671.pdf
- Data ONTAP File Access and Protocol Management Guide
 www.now.netapp.com/NOW/knowledge/docs/ontap/rel7311/html/ontap/filesag/accessing/task/t_oc_a
cs_file_sharing_between_NFS_and_CIFS.html
- DataFabric Manager Server 3.7: Operations Manager Administration Guide
- NetApp System Manager Quick Start Guide
- Setting RBAC Access with the VSC
 https://kb.netapp.com/support/index?page=content&id=1012529
- The Virtual Storage Guy Blog
 www.communities.netapp.com/community/netapp-blogs/virtualstorageguy
- TR-3880: CLI Configuration Processes for NetApp and VMware vSphere Storage Arrays Running
 Data ONTAP and ESX/ESXi Server
- TR-3886: Understanding and Using vStorage APIs for Array Integration and NetApp Storage
- TR-3916: VMware vSphere 4.1 Storage Performance: Measuring FCoE, FC, iSCSI, and NFS
 Protocols

VMWARE REFERENCES
- ESXi Configuration Guides
- vSphere Datacenter Administration Guides
- Fibre Channel SAN Configuration Guides
- iSCSI SAN Configuration Guides
- vSphere Upgrade Guide
- Performance Study of VMware vStorage Thin Provisioning
- Configuration Maximums for VMware vSphere 4.1
- All VMware vSphere 4 documentation is located at
 www.vmware.com/support/pubs/vs_pubs.html
13 VERSION HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Revision Date</th>
<th>Revision Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>May 2009</td>
<td>• Original document</td>
</tr>
</tbody>
</table>
| 1.0.1 | August 2009 | • Minor edits
 | | • Reformatted for publishing |
| 2.0 | January 2010 | • Major update focusing on vCenter integrated tools for provisioning and configuration
 | | • Removed all manual storage configurations to the appendix section
 | | • Replaced these sections with the NSM, RCU, and VSC
 | | • Reorganized the document from 16 sections to 8 |
| 2.1 | August 2010 | • Minor edits
 | | • vSphere 4.1 updates
 | | • Added statement about no support for combining iSCSI multiple TCP sessions and NFS in the same hosts
 | | • Removed appendixes for legacy manual processes and placed in TR-3880 |
| 2.2 | September 2011| • Minor edits
 | | • Additional references
 | | • Additional notes on configuring flow control, vicfg compared to esxcfg, and TCP ports used by VSC |
| 3.0 | November 2011 | • Added vSphere 5.0 content
 | | • Changed guidance on Flow Control for 10g and modern switches
 | | • Added more third-party alignment tools |

14 ACKNOWLEDGMENTS

ABOUT THE AUTHORS AND CONTRIBUTORS

The authors of this technical report are members of either the NetApp Virtual Architecture Team or the Cloud Solutions Team based in Sunnyvale, California, and Research Triangle Park, North Carolina.

Vaughn Stewart is a director and the virtualization and cloud evangelist for NetApp. He has worked with hundreds of customers in designing their virtual data centers and is the coauthor of several white papers on deploying VMware technologies on NetApp systems. Vaughn publishes the NetApp blog *The Virtual Storage Guy*; has a patent pending; and has held industry certifications on solutions offered by Microsoft, Cisco, Sun Microsystems, IBM, and NetApp; and VMware awarded him a vExpert in 2009 and 2010.

Larry Touchette is a member of the Data Protection Team and has 10 years of experience supporting, implementing, and designing NetApp storage, replication, and disaster recovery solutions. For the past four years, Larry has been designing and implementing NetApp solutions for VMware environments and holds industry certifications from Microsoft, Sun Microsystems, and NetApp.

Michael Slisinger is a solution architect for NetApp’s Cloud Solutions organization who has coauthored four white papers and best practice guides on integrating VMware with NetApp storage. Previously a consultant with NetApp Professional Services, Mike has over 11 years of experience with NetApp products and holds industry certifications from Microsoft and NetApp.

Peter Learmonth is a virtualization solutions architect focused in the Virtualization Solutions Engineering Team who has been with NetApp for over 11 years. Peter holds industry certifications from NetApp and
VMware and has patents pending. He is author or coauthor of several VMware on NetApp technical reports.

Sitakanta Chaudhury is as a virtualization solutions architect with the NetApp TESO business unit. He has over 11 years of industry experience around server and storage virtualization and specializes in developing infrastructure solutions for cloud, reference architectures, and best practices papers. He is the author or coauthor of several VMware on NetApp technical reports and holds industry certifications from VMware, NetApp, SNIA, Sun Microsystems and Microsoft.

Julian Cates has been working in IT since 1997, the last 8 years of which he has spent at NetApp in roles including Professional Services, Systems Engineering, and Technical Marketing. As a vTME, he is currently focused entirely on joint NetApp/VMware solutions.

The authors and contributors of this content have presented topics on the integration of server and storage virtualization technologies at various VMworld events. Their breakout sessions are posted online at www.vmworld.com.

VMWORLD 2009
- BC3189: How Storage Enhances Business Continuance: From Backup to Fault Tolerance
- BC3210: Best Practices for Recovery with SRM and NFS in vSphere
- TA2955: Sizing Tools for Storage in vSphere and VMware View Environments

VMWORLD 2008
- TA2445: VMware over NAS: Scale, Simplify, and Save
- TA2784: Joint VMware and NetApp Best Practices for Running VI3 on IP-Based Storage
- SP08: Enabling Virtual Storage Management Within VI3
- VD2387: Storage for VDI: 1000s of Desktops for the Price of One

VMWORLD 2007
- BC33: Simply Addressing the Disaster Recovery Needs of Virtual Infrastructures
- DV16: Optimizing Storage for Virtual Desktops
- IP43: Building Virtual Infrastructures with Network-Attached Storage (NAS)

VMWORLD 2011
- SUP1009: Thomson Reuters and NetApp Build a Successful, Efficient Cloud
- SPO3987: Seven Corners and NetApp Accelerate the Journey to the Cloud Together
- SPO3988: Oak Hills and NetApp Do the Math: Implementing a Practical VDI Solution Designed to Scale Beyond 50,000 Seats
- VSP1361: VMware vSphere PowerCLI 101
- VSP3223: Storage as a Service with vCloud Director
- BCO2863: How to Use Distance to Your Advantage to Create a Unified Data Protection Strategy
- EUC2692: Panel — Rethinking Storage for Virtual Desktops
NetApp provides no representations or warranties regarding the accuracy, reliability or serviceability of any information or recommendations provided in this publication, or with respect to any results that may be obtained by the use of the information or observance of any recommendations provided herein. The information in this document is distributed AS IS, and the use of this information or the implementation of any recommendations or techniques herein is a customer’s responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. This document and the information contained herein may be used solely in connection with the NetApp products discussed in this document.

Go further, faster®

2011 NetApp, Inc. All rights reserved. No portions of this document may be reproduced without prior written consent of NetApp, Inc. Specifications are subject to change without notice. NetApp, the NetApp logo, Go further, faster, DataFabric, DataMotion, DataONTAP, FilerView, FlexClone, FlexVol, ManageONTAP, MetroCluster, NOW, RAID-DP, SANscreen, Snap Creator, SnapDrive, SnapManager, SnapMirror, SnapProtect, SnapRestore, Snapshot, SnapVault, and WAFL are trademarks or registered trademarks of NetApp, Inc. in the United States and/or other countries. Cisco, Catalyst, and Cisco Nexus are registered trademarks of Cisco Systems, Inc. Microsoft, SQL Server, Windows, Windows Server, Windows NT, and Windows Vista are registered trademarks of Microsoft Corporation. Linux is a registered trademark of Linus Torvalds. ESX, vMotion, VMware, and vSphere are registered trademarks and ESXi, vCenter, and vCenter Converter are trademarks of VMware, Inc. Intel is a registered trademark of Intel Corporation. All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such. TR-3749-1111