Huawei Cloud Fabric and VMware Collaboration—Innovation Solution in Data Centers
VMware Data Center and Cloud Computing Solution Components

- **Extend virtual computing to all applications**
- **Virtualize networks to improve speed and efficiency**
- **Transform storage networks to meet application requirements**
- **Management tools replaced by automation**

Components:
- **vSphere**
- **vCNS/NSX**

vCloud® Suite
- **Cloud computing automation**
- **Cloud computing operation**
- **Cloud computing services**
Huawei Cloud Fabric and VMware Converged Resource Pool Solutions

Huawei Unicloud Converged Resource Pool Solution

Compute & Network Collaboration Resource Pool Solution
Solution 1: Huawei Unicloud Converged Resource Pool Solution – Overview

Unified management of a converged resource pool
- Unified management of virtual and physical resources
- Multi-vendor device management
- Unified monitoring

FusionSphere Cloud Platform
- Standard OpenStack interface
 Use APIs originating from the OpenStack community; quickly synchronize with latest version released on the OpenStack community.
- Support for third-party systems and devices
 Compatible with the OpenStack ecosystem; supports heterogeneous hypervisor platforms and hardware devices.
- Hardening for commercial use, OpenStack enhancement
 Easy deployment, easy O&M, high reliability, security hardening, automation, scalability

SDN-based hardware overlay network
- Automated network deployment
 Open controller architecture, automated service orchestration and collaboration with VMM, high reliability and scalability of controller
- Elastic, reliable network
 Ability to evolve to 40G/100G network, network virtualization, path optimization
- Refined network O&M
 Visible: What you see is what you get; measurable packet loss ratio, latency, jitter; operability

Virtual and physical resource pool convergence
- Support for KVM, VMware, and Xen virtualization platforms
- Automated provisioning of bare metal servers
- Physical server connection with L2 bridges
- Automated resource pool management and resource sharing
Solution 1: Huawei Unicloud Converged Resource Pool Solution -- Service Provisioning

Step 1: Provision network resources.
- A Tenant Administrator creates a logical network on the service provisioning UI of the cloud platform.
- The Agile Controller interoperates with vCenter using Java interface to complete local network provisioning on VMware VDS.

Step 2: Provision compute resources.
- The Tenant Administrator provisions compute resources (bring VMs online/offline, migrate VMs), and binds VMs to the logical network on the cloud platform.
- Nova-Scheduler works with vCenterDriver to set up an independent resource pool with the vSphere cluster managed by vCenter. Nova-Scheduler does not select hosts in the vSphere cluster. vCenter schedules ESXi hosts based on dynamic entitlements and resource allocation settings, and provides LB and Dynamic Resource Scheduling (DRS) functions automatically.
Solution 1: Huawei Unicloud Converged Resource Pool Solution — Traffic Model

Types of traffic on a hardware VXLAN network

- Depending on traffic flow direction, traffic in a DCN is classified into east-west traffic (intra-DC communication) and north-south traffic (communication with external networks).
- Depending on transmission scope, traffic is classified into four types: 1. intra-subnet traffic within a tenant network; 2. inter-subnet traffic within a tenant network; 3. inter-tenant traffic; 4. traffic from outside DC.

Traffic transmission paths

- 1) Intra-subnet traffic within a tenant network is transmitted within a VXLAN L2 broadcast domain, and therefore is forwarded at L2.
- 2) Inter-subnet traffic within a tenant network is transmitted across VXLAN L2 broadcast domains. It needs to be forwarded by a VXLAN gateway but does not need to pass through a firewall.
- 3) Inter-tenant traffic needs to be forwarded by a VXLAN L3 gateway and processed by a firewall for secure isolation.
- 4) Traffic from outside DC needs to be forwarded to a tenant server through IPS/FW, LB, VXLAN gateway, and ToR switch.
Success Story: XX Bank of China’s SDN Private Cloud

Solution
- The infrastructure uses a spine-leaf architecture, and the overlay network is a VXLAN-based large L2 network, with VTEPs deployed on leaf switches.
- The network uses centralized VXLAN L3 gateway deployment. More gateway groups can be deployed to support service expansion.
- Hardware FWs are used for north-south traffic, deployed in inline or bypass mode (inline routed mode recommended).
- The network controller works with an OpenStack cloud platform to automate network service deployment.

Benefits
- Hardware overlay networking ensures microsecond-level latency and jitter. Stacking and all-active gateway deployment provide high network performance and reliability.
- Centralized gateway deployment suits O&M models of traditional data center networks.
- Network resource sharing and automated service deployment improve the efficiency of application deployment.
- Multi-vendor virtualization platforms are converged to enable unified management of compute resource pool.
Centralized management of network resource pool
- Virtual and physical network resource polling, unified management, and on-demand allocation
- Application-based network service orchestration, drag-and-drop provisioning, what you see is what you get
- Unified network monitoring and management, application, logical, and physical networks mutually visible

Compute and network collaboration
- Compute and network resources cannot be managed by a unified cloud platform in a short period.
- Compute administrators create compute and storage resource pools on the VMM, without affecting running services.
- The Agile Controller creates a virtual network and is interoperable with multiple virtualization and physical host management platforms. It supports unified provisioning of physical and virtual networks and enables network policies to be migrated with VMs.

SDN-based hardware overlay network
- Automated network deployment
 Open controller architecture, automated service orchestration and collaboration with VMM, high reliability and scalability of controller
- Elastic, reliable network
 Ability to evolve to 40G/100G network, network virtualization, path optimization
- Refined network O&M
 Visible: What you see is what you get; measurable packet loss ratio, latency, jitter; operability

Virtual and physical resource pool convergence
- Support for VMware and Hyper-V virtualization platforms.
- Physical server connection with L2 bridges
- Interoperable with traditional networks, allowing for future network convergence
- Automated resource pool management and resource sharing
Solution 2: Compute & Network Collaboration Resource Pool Solution — Service Provisioning

Step 1: Provision network resources.
- A Network Administrator creates a logical network on the network provisioning UI of the Agile Controller.
- The Agile Controller interoperates with vCenter using SOAP interface to complete local network provisioning on VMware VDS.

Step 2: Provision compute resources.
- A System Administrator provisions compute resources (bring VMs online/offline, migrate VMs), and binds VMs to the logical network on vCenter.
- The Agile Controller interoperates with vCenter using SOAP interface to detect VM login/logout/migration events and dynamically delivers configuration to network devices based on VM locations.
- The Network Administrator is unaware of the System Administrator’s operations on VMs.
Types of traffic on a hardware VXLAN network

- Depending on traffic flow direction, traffic in a DCN is classified into east-west traffic (intra-DC communication) and north-south traffic (communication with external networks).
- Depending on transmission scope, traffic is classified into four types: 1. intra-subnet traffic within a tenant network; 2. inter-subnet traffic within a tenant network; 3. inter-tenant traffic; 4. traffic from outside DC.

Traffic transmission paths

- 1) Intra-subnet traffic within a tenant network is transmitted within a VXLAN L2 broadcast domain, and therefore is forwarded at L2.
- 2) Inter-subnet traffic within a tenant network is transmitted across VXLAN L2 broadcast domains. It needs to be forwarded by a VXLAN gateway but does not need to pass through a firewall.
- 3) Inter-tenant traffic needs to be forwarded by a VXLAN L3 gateway and processed by a firewall for secure isolation.
- 4) Traffic from outside DC needs to be forwarded to a tenant server through IPS/FW, LB, VXLAN gateway, and ToR switch.
Success Story: A Large Nordic ISP’s DC SDN Solution

Solution
- The customer is the largest IT services provider in Northern Europe and provides multi-tenant and hosting services on a public cloud.
- The Agile Controller works with a cloud platform to complete service provisioning automatically.
- Tenants apply for cloud services on the self-service portal page, without intervention by Administrators.
- The fabric network is deployed using VXLAN technology.
- Agile Controller implements tenant isolation and controls tenants’ access to branches and Internet.

Benefits
- Simplified O&M: Services of tenants can be provisioned automatically based on requirements of tenants.
- Openness and scalability: The service is compatible with the customer’s service platform.
- Flexible deployment: As the customer’s network and IT departments have not been converged, network automation can be implemented first, and network and compute resource convergence can be implemented later.
- Resource convergence: Physical servers and virtualization platforms VMware vSphere and Microsoft Hyper-V can be used to set up a compute resource pool.
Solution 3: VMware Cloud Data Center & Huawei Joint Solution—Overview

VMware vRealize cloud management platform
- Reuse the existing infrastructure, management tools, and management experience.
- Automatic deployment in various environments reduces development cost.

NSX-based software overlay network
VMware NSX is a transformative system that realizes the full potential of software-defined data centers by creating and operating a network on existing hardware devices.
- Agility and simplified O&M model
 NSX can be deployed on the physical infrastructure without interrupting running services. Similar to server virtualization, NSX virtualizes a physical network into a transmission resource pool and uses the policy-driven model to provide network and security services.
- Advanced network connection and security service platform
 Traditional networks cannot change quickly to adapt to changes in data center services and are subject to configuration mistakes. NSX can configure virtual networks dynamically and automatically, enabling you to add virtual and physical services flexibly based on your service requirements.

Huawei and VMware Joint Solution
- CloudEngine data center switches use open software architecture and provide programmability using container technology.
- With a plug-in installed, CloudEngine data center switches can interoperate with NSX to enable communication between physical and virtual servers, and between VXLAN and traditional networks.
- CloudEngine switches ensure access layer reliability using stacking and M-LAG technologies.
- NSX centrally manages the overlay network and can connect to multi-vendor VAS devices to provide L4-L7 services.

High-performance VXLAN GW
- Interconnection between VXLAN and non-VXLAN networks
- High-performance communication between servers

Flexible service deployment
- Flexible VM migration, automatic network resource scheduling for migrated VMs
- Unified VXLAN topology view
Solution 3: VMware Cloud Data Center & Huawei Joint Solution—Interoperation

NSX and CloudEngine switch interoperation framework

Monitor OVSDB information, translate it into configuration, and write configuration to switches:
- Gateway activate/deactivate configuration
- VXLAN configuration

Monitor device information and write it into OVSDB server:
- Physical_Switch Table
- Physical_Port Table
- Ucast_Macs_Local Table

Open architecture of Huawei CloudEngine switches

- Support containers and multiple virtualization technologies, allowing for integration with third-party applications.
- Provide various open APIs to enable programmability, automation, and visualization.

- Elastic: Triples industry average switching capacity to support 10 years of business development.
- Virtualized: Industry’s highest 1:16 virtualization capability improves ICT resource utilization.
- Agile: Full openness accelerates cloud service innovation.
- High quality: High-value services deliver high-quality experience.

- Open API
- OVSDB (NSX)
- OpenFlow (Vyatta)
- Puppet Agent

Virtualization (VM/LXC etc.)
Forwarding plane
Network OS (Linux compatible)
Solution 3: VMware Cloud Data Center & Huawei Joint Solution—Traffic Model

Types of traffic on a hybrid VXLAN network
- Depending on traffic flow direction, traffic in a DCN is classified into east-west traffic (intra-DC communication) and north-south traffic (communication with external networks).
- Depending on transmission scope, traffic is classified into four types: 1. intra-subnet traffic within a tenant network; 2. inter-subnet traffic within a tenant network; 3. inter-tenant traffic; 4. traffic from outside DC.

Traffic transmission paths
- 1) Intra-subnet traffic within a tenant network is transmitted within a VXLAN L2 broadcast domain, and therefore is forwarded at L2.
- 2) Inter-subnet traffic within a tenant network is transmitted across VXLAN L2 broadcast domains. It needs to be forwarded by a VXLAN gateway but does not need to pass through a firewall. NSX OVS provides VXLAN L3 gateway function and allows VMs on different hosts to communicate directly.
- 3) Inter-tenant traffic needs to be forwarded by a VXLAN L3 gateway and processed by a firewall for secure isolation.
- 4) Traffic from outside DC needs to be forwarded to a tenant server through IPS/FW, LB, VXLAN gateway, and VTEPs.
Success Story: XX Carrier’s Public Cloud Project

Solution
- The customer is a Tier-1 carrier in Europe and built multiple data centers over the same physical network architecture to provide public and rack renting/hosting services.
- In the NSX overlay area, the NSX controller manages CloudEngine switches and enables communication between traditional hosting services and VM services.
- The OpenStack overlay area uses Huawei’s hardware overlay SDN solution, in which the Agile Controller implements automatic service provisioning.

Benefits
- The VMware NSX and multiple OpenStack cloud platforms are deployed on the same fabric network. Both hardware and software overlay networks are deployed.
- The NSX-based software overlay solution provides unified management of virtual and physical networks. NSX manages PaloAlto and Fortinet firewalls to provide high-level security protection (micro-segmentation) for east-west traffic.
- The hardware overlay solution incorporates OpenStack and hosting services, and implements automated provisioning of physical and virtual networks.